

Insensitive Munitions Technology: Career Reflections and International Perspective

Fulmination 2022

Dr. Ernie Baker Warheads Technology TSO

e.baker@msiac.nato.int

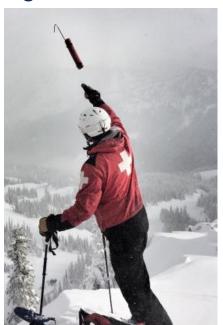
17/05/2022

Unclassified/Unlimited distribution

- My Career
- NATO MSIAC
- IM: US vs. International Policy
- NATO IM Test Standard Update
- IM Success Examples
- Harmonization of IM and Safety
- Technology Gaps
- Conclusion

PRESENT AND PAST

NATO Munitions Safety Information and Analysis Center (MSIAC)


- 1 June 2016
- Technology Specialist Officer for Warheads
- Support the 15 MSIAC member nations

US Army Armament Research, Development and Engineering Center

- Retired May 31 2016 after 31 years
- Senior Research Scientist (ST) for Insensitive Munitions
- Support the US DoD, Army and ARDEC

Strong interest in energetic materials from a young age

TECHNICAL COMMUNITY

Supporting Munitions Safety

I hugely benefited through technical interactions

- ARDEČ
- DoD (JIMTP)
- DOE (JMP)
- Industry
- Academia
- International

Technical interaction outside of your organization is vital for both personal and technical community development

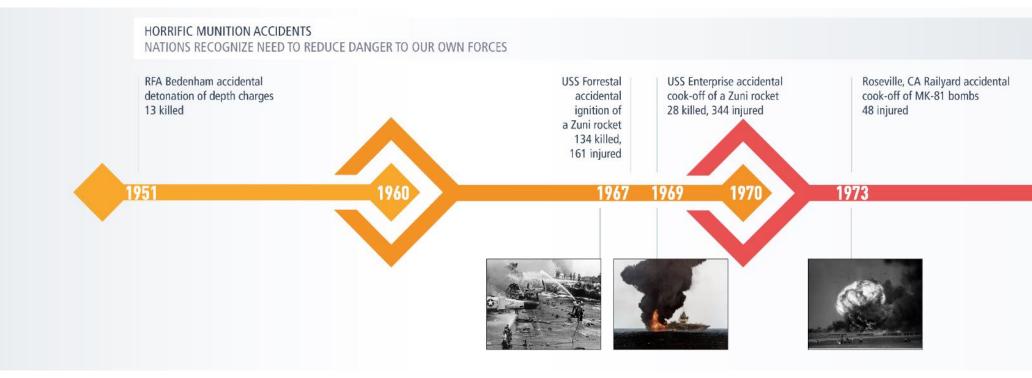
I am a product of the technical community

MSIAC History

History of NIMIC/MSIAC is linked to history of IM

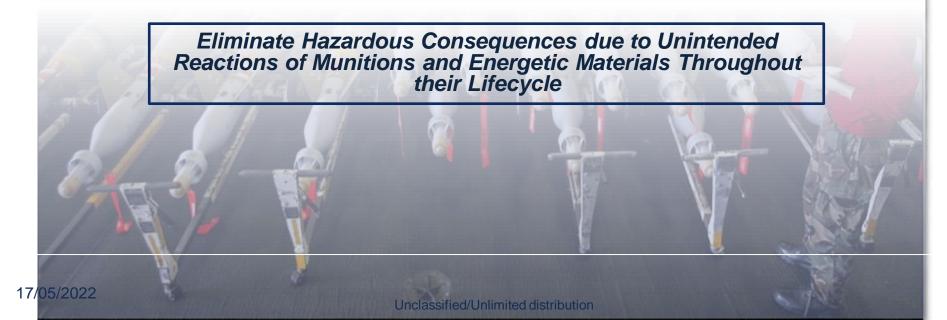
• Need arose from horrific accidents of 1960 and 1970s

17/05/2022



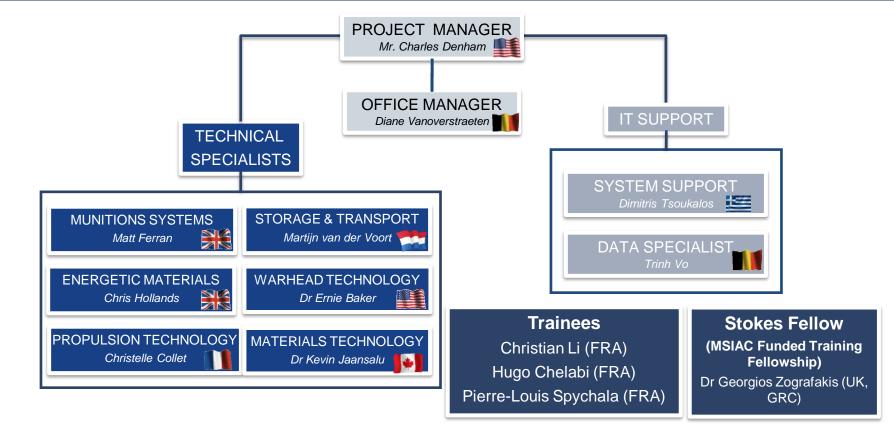
Unclassified/Unlimited distribution

Time Line



Technical Information & Analysis Center Focusing on Munitions Safety

- NATO Project Office
- Independently Funded by its Member Nations


MSIAC Strategic Goal:

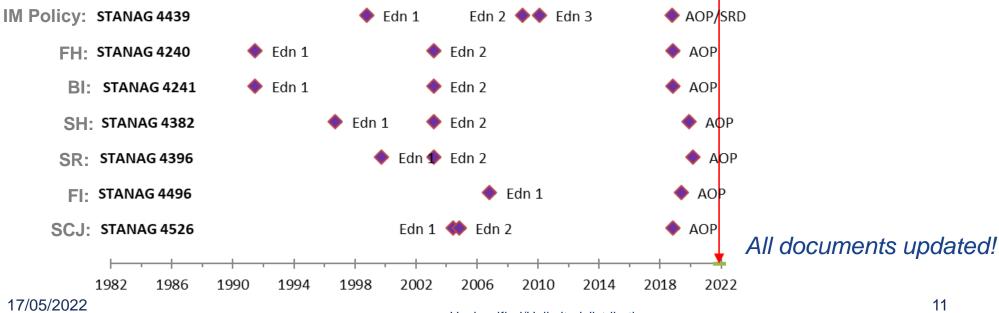
MSIAC Staff

Supporting Munitions Safety

Knowledge & Access to Community of Technical Experts Across our Member Nations

- Want to minimize the risk from our own munitions
- Understand and demonstrate benefits of munitions safety throughout the lifecycle
- Improve and standardize munitions safety risk assessment methodologies
 - better understanding of benefits and relative costs of munitions safety measures and methods
- Harmonize munitions safety policies to achieve greater sharing of munitions safety evidence
- Provide world leading scientific and technical analysis, and advice to support decisions on munitions safety and risk management
- Standardize approach to safe storage and use of munitions in operational theatres

US DoD Insensitive Munitions: MIL-STD-2105D


- Refers to NATO Standards (STANAGs)
 - STANAG 4240: Fast Cook-Off (FCO), in a fire
 - STANAG 4382: Slow Cook-Off (SCO), near a fire
 - STANAG 4241: Bullet Impact (BI), rifle attack
 - STANAG 4496: Fragment Impact (FI), mortar or artillery attack
 - STANAG 4396: Sympathetic Reaction (SR), prevent mass detonation
 - STANAG 4526: Shaped Charge Jet Impact (SCJI), RPG attack

International

- NATO: Policy for Introduction and Assessment of Insensitive Munitions (IM), STANAG 4439 covering AOP-39 Edition D Version 1 (20 Nov 2018)
 – All NATO IM policy and test standards have been recently updated!
- However different countries have different national policies
- Several NATO and some MSIAC countries do not have national IM policies

- Last coordinated publication of IM Test STANAGs April 2003 ٠
- STANAG 4439 revised twice since last Test STANAG
 - Resulting inconsistencies
- Changing organization and structures
- Opportunity with transition of Test STANAGs to AOPs ۲

NATO IM STANAG Timeline

AC/326, SG/B

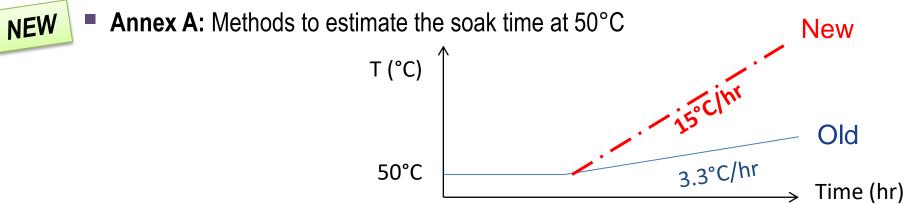
Unclassified/Unlimited distribution

AOP-4240: Fast Heating

Supporting Munitions Safety

- Test procedures Modified
 - Procedure 1: Large pool fire
 - Procedure 2: Mini pool fire
 - Procedure 3: Fuel burner fire

- Themocouples Modified
 - Minimum 6 TC: (40-60 mm) fore, aft, starboard, port, above and below
- Conformity Modified
 - Taverage > 800°C measured by all TC
 - 550°C under 30 s measured by all TC


US NSWCDD 3.7 m square propane burner

AOP-4382: Slow Heating

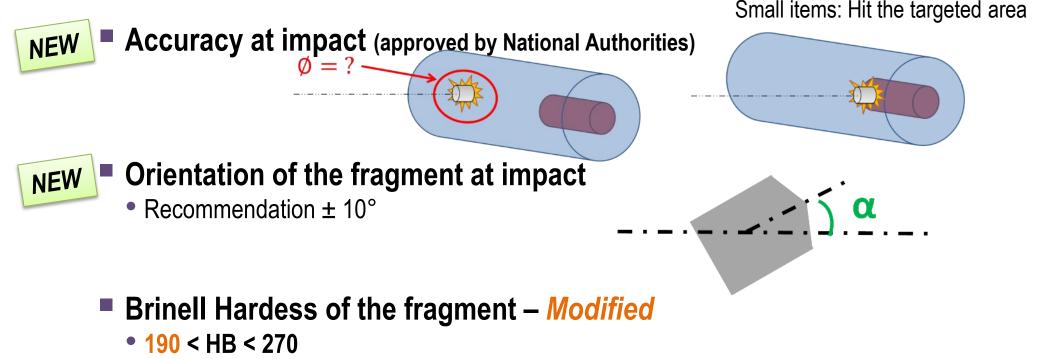
Test procedures – Modified

- Procedure 1: Preconditionning at 50 ± 3°C until thermal equilibrium of the test item, then Heating Rate 15°C/hr until reaction occurs
- Procedure 2: Another HR determined by THA
- Procedure 3 (UN HC): 3,3°C/hr until reaction occurs possibility to precondition at Treaction – 55°C (estimated)
- Thermocouples Modified
- 6 required TC at 40-60 mm around the test item, rather than 4

Test procedures – Modified

- Procedure 1: 3 12.7 mm AP M2 projectiles at 850 ± 20 m/s (600 ± 50 rounds/min)
- NEW
 - Procedure 2: 1 12.7 mm AP M2 projectile at 850 ± 20 m/s
 - Procedure 3: 1 or several projectiles projectile and velocity determined by THA

- Annex A: Recommendations aiming point and target area
- Annex B: Specifications 12.7 mm AP projectiles



AOP-4496: Fragment Impact

Supporting Munitions Safety

- Test procedures Unchanged
 - Procedure 1: 2530 +/- 90 m/s
 - Procedure 2: 1830 +/- 60 m/s

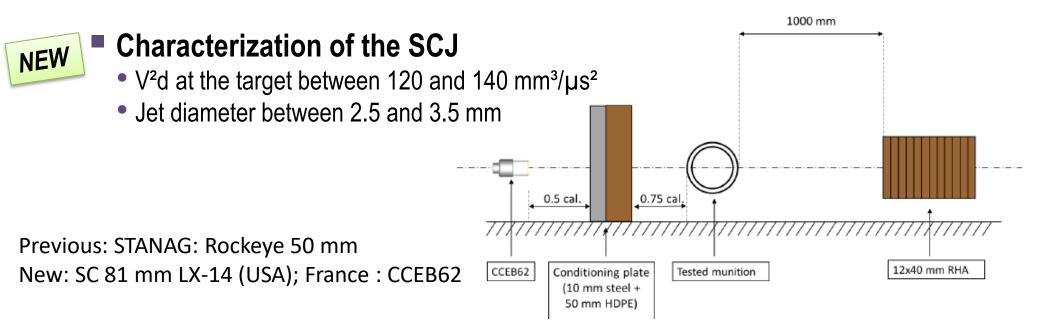
Test methods (donor initiation)

- If designed to detonate, detonate the donor munition in the design mode *Unchanged*
- For munitions which are not designed to detonate, initiate the donor munition(s) with a credible threat that produces a worst-case response (for example, shaped charge jet) – *Modified*
- Sand not to be used for inert munitions or confinement Modified

- Additions in SRD AOP-39.1
- NEW

NEW

- SR configuration examples
- Clarification of what is the test item in SR tests
- Addition of definitions for donor/acceptor munition in official NATO terminology


NEW

AOP-4526: Shaped Charge Jet

- - - -

Test procedures – *Modified*

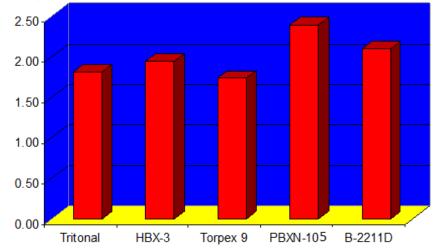
- Procedure 1: SCJ characteristic of RPG-7 (Rocket Propelled Grenade)*
- Procedure 2: SCJ supported by means of a THA

155-mm M795 High Explosive Projectile

Supporting Munitions Safety

	formance Com INT Performan Conventional TNT 1.65 6960 2300	•		 IM Technology IM High Explosive: IMX-101 with Large Critical Diameter (66mm) Supplementary charge Not fuzed –Meltable fuze lifting plug adaptor IM Benefits (cost analysis) Melt Cast Formulation Choice of EM results in small cost increase per unit round 							
		1 A-			IM Signature						
	RECC		200	M795 (TNT) M795 (IMX-101)	FCO	SCO	BI	FI	SR	SCJ	
					Ш	Ш	IV	IV	1.1		
					V	V	IV	V	Pass	IV	
	Customers	S									

• U.S. Army, U.S. Marine Corps



Heavy Torpedo (F21)

Supporting Munitions Safety

Performance Comparisons

- Dual purpose torpedo
- Relative Bubble Energy

Customers

French Navy

IM Technology

- EIS High Explosive: 250 Kg B-2211D (PBX)
- AP/AI/I-RDX®/HTPB (43/25/20/12)
- Thermal Protection and Fuze Varnish
 - Delayed ignition for fire fighting
 - Controlled ignition due to fuze varnish

IM Benefits (cost analysis)

- Heavy Torpedo Unit Cost: >US\$ 2.5M
- Low Cost Ingredients, WH HE cost < 1% total torpedo cost

IM Signature

*Specific stowage configuration (head to tail) and a metal protection plate



STORM SHADOW / SCALP EG

Supporting Munitions Safety

Performance Comparisons

 All western countries precision-guided cruise missiles are IM to a certain extent and used similar HE formulations (PBXN-109 type)

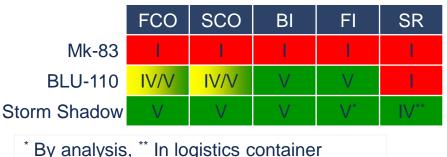
FranceGreece

• Italy

• UK

17/05/2022

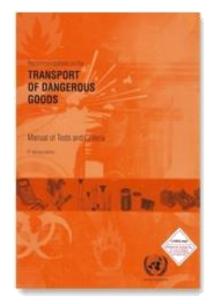
Customers


IM Technology

- High Explosives:
 - PBXN-110 (Precursor Charge)
 - PBXN-109 (Follow-Through Bomb)
- Booster Explosive: Rowanex 3601
- Logistic Container

IM Benefits (cost analysis)

- UKNot Relevant as this family of large penetrator missiles is IM only
- MoD classified as NATO 1.2.3



HARMONIZATION OF IM AND HC

Ongoing working group (WG) to investigate further harmonizing IM and hazard classification (HC) testing and assignment procedures.

- Working to combine STANAG 4439 & AOP-39 with STANAG 4123 & AASTP-3.
- Harmonize IM and HC testing beyond NATO: Use UN test series 7 for hazard division 1.6 (rarely used)

INSENSITIVE MUNITIONS GAPS

Supporting Munitions Safety

What keeps me up at night?

- Cook-off and sympathetic reaction
 - Large bomb sympathetic reaction: been working this issue for over 25 years
 - Rocket motors: introduction of reduced response rocket motors has been difficult
- Medium caliber explosives: small critical diameter, reduced sensitivity and cost effective
- Is gap test data reliable and predictive? NATO working group formed in 2019!
- Large caliber gun launch of new energetic materials: lack of ignition understanding and physics based fill acceptance criteria: How does laboratory setback testing relate to actual gun launch? NATO working group formed in 2017!
- Slow cook-off rate: Are we working a problem that doesn't exist? At what cost? Issue resolved: NATO working group resulted in an updated STANAG!

WORST DAY: AMERICAN ORDNANCE EXPLOSION

Supporting Munitions Safety

Fatal explosion occurred on 12 June 2006 killing two. Justin Friedrichsen (24), Steven Upton (48)

BEST DAY: INSENSITIVE MUNITIONS SUCCESS

Supporting Munitions Safety

Insensitive Munitions saves lives!

MRAP exterior view MRAP interior view


Collected unexploded shell bodies and separated fuzes

12 SEP 2009: Specialist Ng was travelling in a Mine Resistant Ambush Protected (MRAP) vehicle when it was hit by a very powerful Improvised Explosive Device (IED). The IED ruptured the vehicle's hull and fuel tank, which engulfed the vehicle interior in flames-to include sixteen M768 60mm mortar cartridges that were carried inside the cabin with the seven-man crew. Although several soldiers were seriously injured in the ambush, all survived. Specialist Ng credited the Insensitive Munitions (IM) features of the M768 cartridges with averting a much greater disaster.

Questions?

Supporting Munitions Safety

