

Development of an additively manufactured thermal technique to access and vapourise a liquid payload within a munition

Harriet Hoskyns

In collaboration with Cranfield University at Shrivenham Defence Academy

17/05/2022 / © Crown copyright 2021 Dstl

OFFICIAL

Introduction and Overview

- The placement: Cranfield University
- Introduction to the project
- The printer
- Work process
- Results
- Future work

Introduction to the project

Aims

- Develop an additive manufacturing technique for 3D printing energetic material
- Design a 3D printed device that can penetrate through 10mm steel (shell)
- And eliminate the liquid payload within the munition
- Decide on a suitable composition for the energetic device

The Printer

4 OFFICIAL

Assess

Results

Assess

Results

Assess

Larger scale

🖆 Save to File	
olors: Extruder 	⊖ Speed
Printing Statistics	
Estimated Printing Time:	5h:41m:53s
Layer Count:	67
Total Lines:	127158
Filament needed:	107543 mm
actuator	63899 mm
BinderValve	43644 mm
inertDispenser	0 mm

Show Travel Moves

Show complete Code
 Show Single Layer

Printing:

- Multiple prints in one go
- Light thermite and dark thermite

Device

- Large rod-like structure
- Set up like a firework

Final set-up

Results

Pros:

- Ignition successful
- Mechanism worked

Cons:

- Confinement issues affected burn rate
- Breach unsuccessful
- Failed propagation

16

Future Work

Future work:

- Funding has continued but I am no longer on the project
- Target confinement issues
- Look at potential new designs (right)
- Assess propagation issues
- Collect more data
 - Pressure
 - Temperature
 - Water vaporisation

 ${\tt e}$ charge (T), Main charge (C), Interfacial zone (F), Sheath Surround, Plastic containment sheath (P), and Spring.

Discover more

18 **OFFICIAL**

A special thanks to:

Cranfield university

- Ranko Vrcelj
- Christine McGee
- Jacopo Bonifacio

Dstl

STEM Futures Scheme

Any Questions?

hhoskyns@dstl.gov.uk