



# Application of Herd Immunity to Munitions Safety / Approaches to Lifing Algorithms

### Fulmination 2022

Matt Ferran TSO Munition Systems <u>m.ferran@msiac.nato.int</u> Martijn van der Voort TSO Materials Storage & Transport Safety

m.vandervoort@msiac.nato.int

Kevin Jaansalu TSO Materials Technology <u>k.jaansalu@msiac.nato.int</u>



04/2022



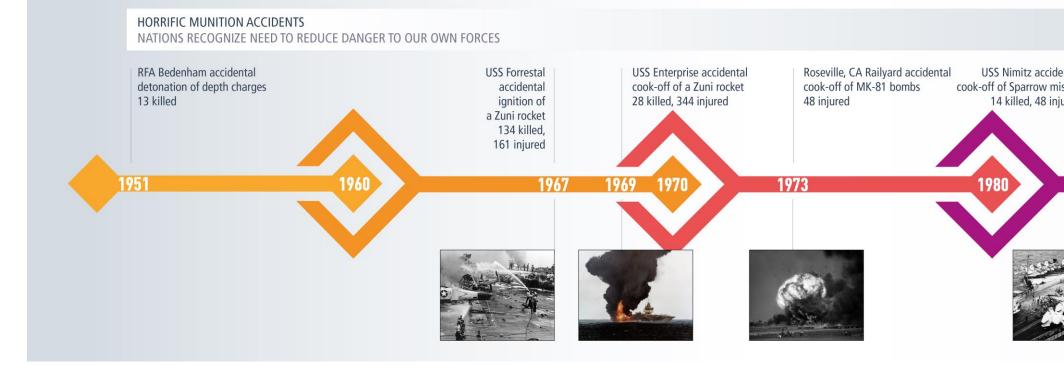
#### History

### History of MSIAC is linked to history of Insensitive Munitions (IM)

• Need for IM arose from horrific accidents of 1960 and 1970s




















### **Our Organization**

#### **Technical Information Analysis Center Focusing on Munitions Safety**

- NATO Project Office
- Independently Funded by its Member Nations (16 currently)

#### Areas of Expertise:

- Warhead Technology
- Propulsion Technology
- Materials Technology
- Energetic Materials
- Munitions Transport and Storage Safety
- Munitions Systems

#### Products & Services:

- Technical Questions
- Promotion/participation International Conferences
- Support to NATO WG activities
- Training and Workshops
- Technical Reports
- Repository of Technical Information

Eliminating Safety Risks from Unintended Reactions of Munitions and Energetic Materials throughout their Lifecycle



#### **MSIAC Member Nations**

- MSIAC Strategies, Policies, & Work Efforts Defined by a Steering Committee (SC)
  - 1 SC Representative per Member Nation, 1 Vote per Member Nation
  - 1 Elected Chairman (non-voting) from a Member Nation



٠





NATO HQ - Siège de l'OTAN

B-1110 Brussels - Belgique



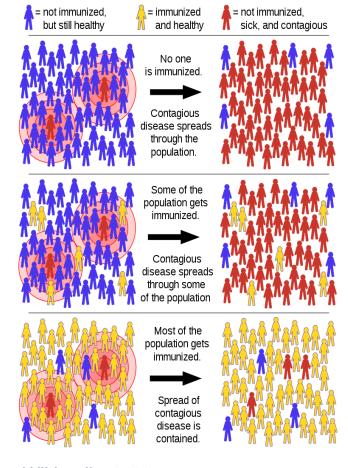
#### Application of Herd Immunity to Munitions Safety



- Introduction of IM creates safety benefits but replacement of conventional munitions by IM often occurs partially / in phases
- Is aggregate reaction of larger stockpiles lessened when only a portion of the stockpile is IM?
- Objectives of MSIAC study:
  - Assess implications of mixing IM / non-IM munitions in a stockpile
  - Develop theoretical methods to determine a critical quantity of IM
  - Explore concept of **herd immunity** as applied to munitions safety



## Herd Immunity


 If a sufficiently high proportion of individuals are immune to a disease, especially through vaccination, the spread within a population is restrained

 $R_e = R_0 \cdot S = 1$ 

- Re Effective reproduction number
- Ro Basic reproduction number
- S Proportion of population susceptible to infection
- Herd Immunity Threshold (HIT)

$$HIT = 1 - \frac{1}{R_0}$$

04/2022



Wikipedia, 2021



#### Herd Immunity

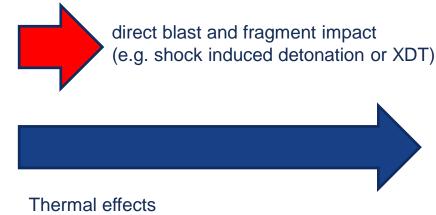
Supporting Munitions Safety

| Disease               | Transmission     | Ro      | НІТ    |  |
|-----------------------|------------------|---------|--------|--|
| Measles               | Airborne         | 12–18   | 92–95% |  |
| Pertussis             | Airborne droplet | 12–17   | 92–94% |  |
| Diphtheria            | Saliva           |         | 83–86% |  |
| Rubella               | Airborno droplot | 6–7     | 80-86% |  |
| Smallpox              | Airborne droplet | 5–7     |        |  |
| Polio                 | Fecal-oral route | 5-7     | 00-00% |  |
| Mumps                 |                  | 4–7     | 75–86% |  |
| COVID-19 (2020 -      | Airborne droplet | 2.5–4   | 60–75% |  |
| SARS (2002–2004)      |                  | 2–5     | 50–80% |  |
| Ebola                 | Bodily fluids    | 1.5–2.5 | 33–60% |  |
| Influenza (pandemics) | Airborne droplet | 1.5–1.8 | 33–44% |  |



### Herd Immunity

- Assumption: populations are homogeneous, or well-mixed, meaning that every individual comes into contact with every other individual
- Reality:
  - o Heterogeneous populations, networks
  - Vaccine efficiency
  - Duration of vaccine effectiveness
  - Prevention of infection and transmission or only infection






#### Disease versus munition response

- "Contagious disease" = response of donor munition to initiating stimuli (e.g. accident or enemy action)
- "Infection" of acceptor munitions, leading to further munition responses and further "infections"
- The six munition response types (AOP-39) = different "diseases" or "disease severities":
  - Detonation (type I)
  - Partial detonation (type II)
  - Explosion (type III)
  - Deflagration (type IV)
  - Burn (type V)
  - No reaction (type VI)

#### **Mechanism / Incubation time**

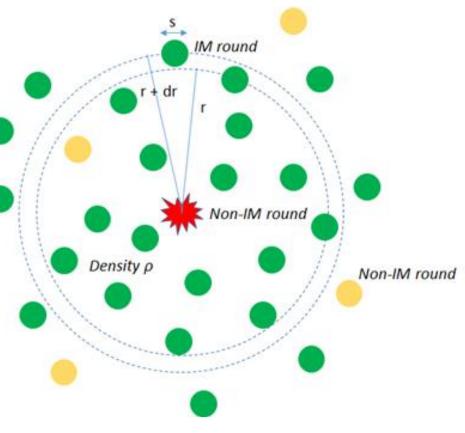




- Vaccination versus Insensitive Munitions
  - "vaccination" analogous to introducing munitions that do not exhibit violent response, i.e. Insensitive Munitions
  - The "vaccinated" (IM) munition does not cause any new infections
  - Important note: IM Compliance does not equate to Immunity!

| Test                            | Required Response for IM Compliance |  |  |
|---------------------------------|-------------------------------------|--|--|
| Fast Heating (FH)               | No worse than Type V                |  |  |
| Slow Heating (SH)               | No worse than Type V                |  |  |
| Bullet Impact (BI)              | No worse than Type V                |  |  |
| Fragment Impact (FI)            | No worse than Type V                |  |  |
| Shaped Charge Jet Impact (SCJI) | No worse than Type III              |  |  |
| Sympathetic Reaction (SR)       | No worse than Type III              |  |  |

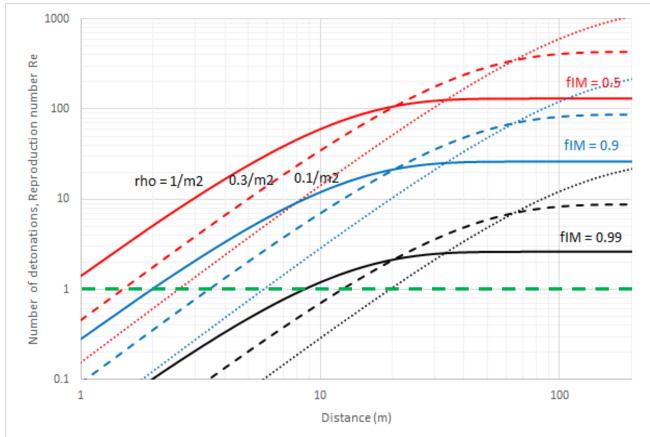



- Mixing of Individuals vs Munitions
  - Munitions transported and stored in configurations, in which IM and Non-IM is typically not mixed
  - During an accident munitions do not move around (proximity and line of sight are required for 'infection')



### 2D random distribution of munitions

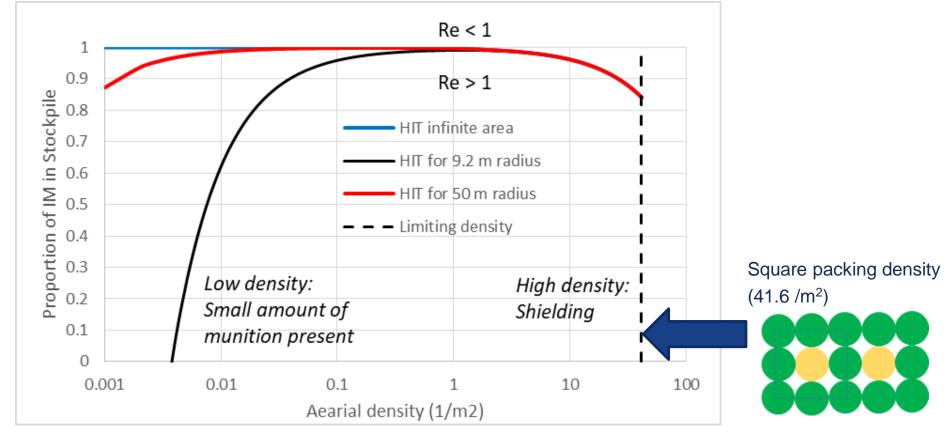
#### • Assumptions:


- 2D configuration with a random distribution of separate munitions, munition stacks or storage magazines
- Propagation of reaction occurs by fragment impact
- There are two types of acceptors, with variable proportions:
  - Non-IM assumed to detonate if there is a line of sight with donor; resulting fragments can then initiate other munitions within line of sight
  - IM do not detonate if line of sight with donor,
    i.e. they "block" the fragment. No further
    propagation of "mild" (Type V) response





### 2D random distribution of munitions


#### • Mathematical derivation of number of detonations e.g. for 155 mm ammunition





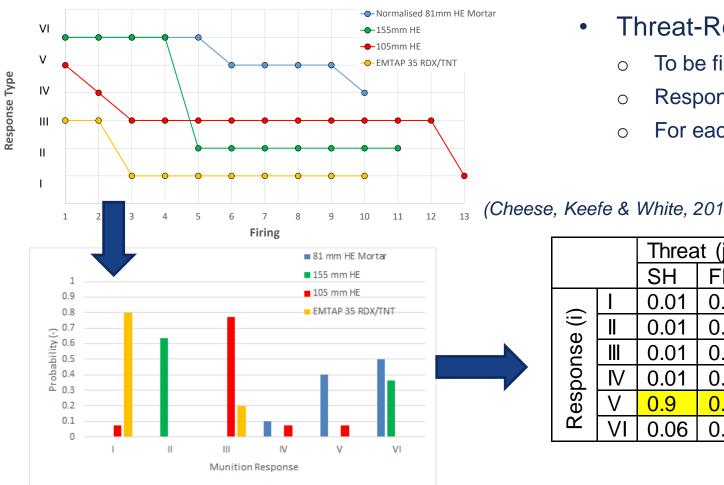
### 2D random distribution of munitions

• Herd Immunity Threshold as a function of aerial density and size of area





 Calculation method to predict probability of threats and responses based on test data and expert judgement



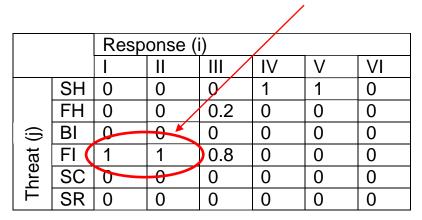

- Consists of:
  - Threat vector (T)
  - Threat-response matrix (TR)
  - Response-threat matrix (RT)
  - Response vector (R)



## Munition response in 1D configuration

Supporting Munitions Safety




- Threat-Response (TR) matrix
  - To be filled based on test data
  - Response probability distribution
  - For each threat

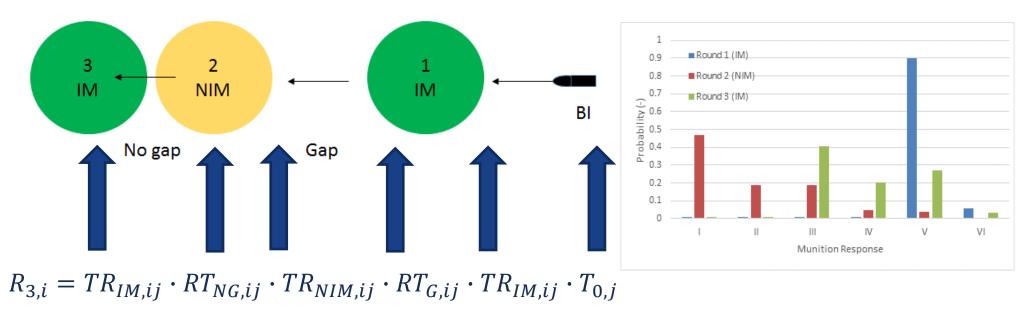
(Cheese, Keefe & White, 2018)

|              |    | Threat (j) |      |      |      |      |      |
|--------------|----|------------|------|------|------|------|------|
|              |    | SH         | FH   | BI   | FI   | SC   | SR   |
| Response (i) |    | 0.01       | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|              |    | 0.01       | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
|              |    | 0.01       | 0.01 | 0.01 | 0.01 | 0.5  | 0.5  |
|              | IV | 0.01       | 0.01 | 0.01 | 0.01 | 0.25 | 0.25 |
|              | V  | 0.9        | 0.9  | 0.9  | 0.9  | 0.2  | 0.2  |
|              | VI | 0.06       | 0.06 | 0.06 | 0.06 | 0.03 | 0.03 |



- Response-Threat (RT) matrix
  - What threat does a munition response pose to a next munition?
  - o Based on expert judgment
  - E.g. detonation (I) or partial detonation (II) response
    - Leads to fragment (FI) threat when there is a gap, and SR threat when there is no gap.

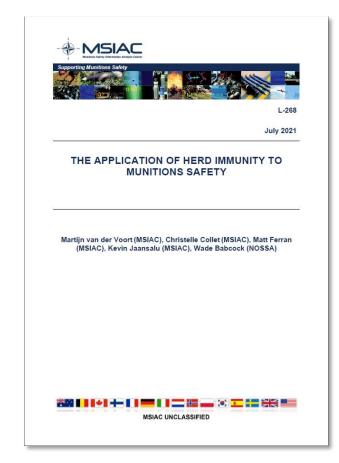



RT matrix for gap situation

|            |    | Resp | onse (i | i)  |    |     |    |
|------------|----|------|---------|-----|----|-----|----|
|            |    |      | I       | III | IV | V   | VI |
| (j)        | SH | 0    | 0       | 0   | 0  | 0.5 | 0  |
|            | FH | 0    | 0       | 0.2 | 1  | 0.5 | 0  |
|            | BI | 0    | 0       | 0   | 0  | 0   | 0  |
| eat        | F  | 0    | 0       | 0   | 0  | 0   | 0  |
| Threat (j) | SC | 0    | 0       | 0   | 0  | 0   | 0  |
|            | SR | 1    | 1       | 0.8 | 0  | 0   | 0  |
|            |    |      |         |     |    |     |    |

RT matrix for no gap situation




#### • Calculation of the response vector of round 3





#### Conclusions

- The models illustrate the importance of careful planning and design of storage, including buffered storage and other mitigation options
- Models can be further improved by adding more realistic assumptions of propagation of reactions, including less violent reactions, more complex geometries, availability of data for mixed munition configurations etc.
- The associated report (MSIAC L-268) presents a theoretical basis that may help national authorities assess the interim benefits of IM investments, during the period when inventories are only partially converted





#### Approaches to Lifing Algorithms





- Aim:
  - Describe the ageing of materials
  - Outline algorithms and requirements for capturing ageing processes of energetic materials
  - Basis for improved munition lifing predictions
- Part I: The System in which the Algorithm Operates
- Part II: Four Situations for Algorithms
- Part III: The Algorithms



#### Influences:

- Information available as input
- Nature of output (i.e. what information it must give to be of use)

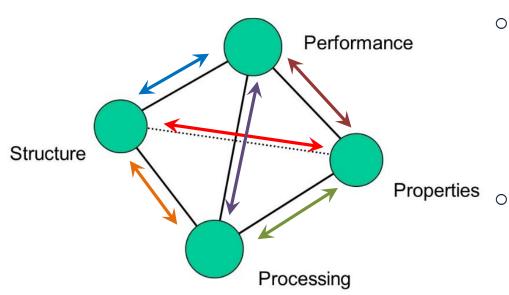
#### Must understand:

- What constitutes "end-of-life" for a munition / energetic material
  - Understanding of environment within which munitions operate
- National munition safety practices, inc.:
  - Approaches to life management
  - Procurement strategies
  - Environmental testing programs employed
  - In-service surveillance (ISS) practices, inc. munition health monitoring (MHM)



### Part I: The System

 Munitions exposed to natural and induced mechanical and climatic environments




- Leads to mechanical and thermomechanical forces being imparted onto munitions
  - Chemical ageing
  - o Mechanical damage





### Part I: The System

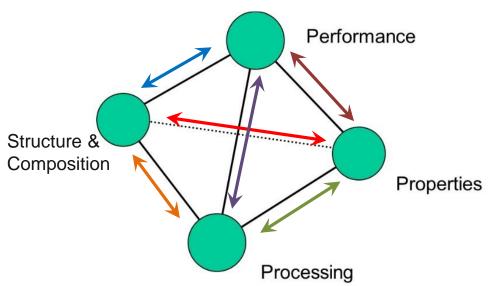


- What is "End-of-Life"?
  - Point at which there is an adverse effect on performance or safety
    - Hazard properties
    - IM response
    - Burning rate / blast / pyro output etc.
    - Point at which material composition / structure or properties are out of tolerance
      - E.g. remaining stabilizer levels
  - o Equivalent environmental exposure
- Material, system and application dependent



#### National munition safety practices:

- Different national approaches to lifing:
  - Definite Life: end-of-life defined by environmental exposure or time based on environmental testing undertaken
    - e.g. 10 years storage, 1,000 flight hours, 10,000 km road transport
  - Indefinite Life: end-of-life defined by a condition, as monitored through ISS
    - e.g. stabilizer remaining, strain to failure, observed cracking
  - Reflective of national risk tolerance (perhaps as legislated); also customary



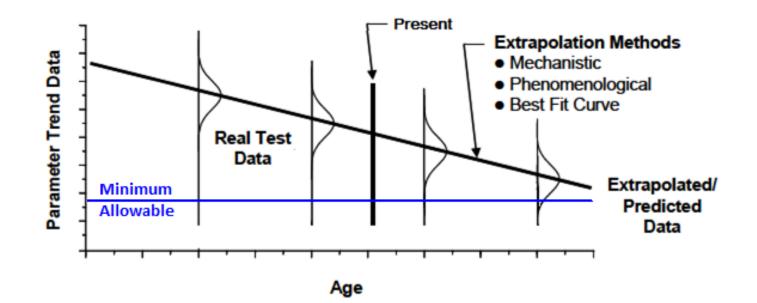

- Life Cycle Environmental Profile (LCEP)
  - Foreseen at the time of design and qualification vs actual exposure
- Environmental Testing Program
  - $\circ$  Use of time compression
- Procurement Scheme (e.g. MOTS, COTS, FMS)
  - o Determines what information will be available

It is within this, sometimes ill-defined, context that a lifing algorithm is expected to function.



### Part II: Four Situations for Algorithms

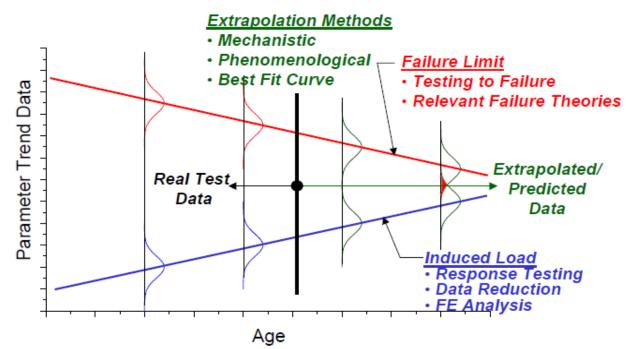



- Calculations that determine any or all of:
  - The end-of-life based on occurrences
  - Conditions for inspection interval / next inspection
  - Changes to material property and compares it to a defined value
  - Consequences on performance for different functions or roles



- <u>Situation 1:</u> Definite life after a set of occurrences (exposure)
  - Environmental qualification and service limits, service exposure, and models for equating processes
  - Differences in LCEP can cause issues.
- <u>Situation 2:</u> Material composition limits, there are suitable degradation models to predict next inspection / test
  - o Situation with gun propellants
  - Manage life and prioritize use




- <u>Situation 3:</u> Material property tolerances
  - Combines environmental service limits, material degradation modes and associated models, and actual service exposure

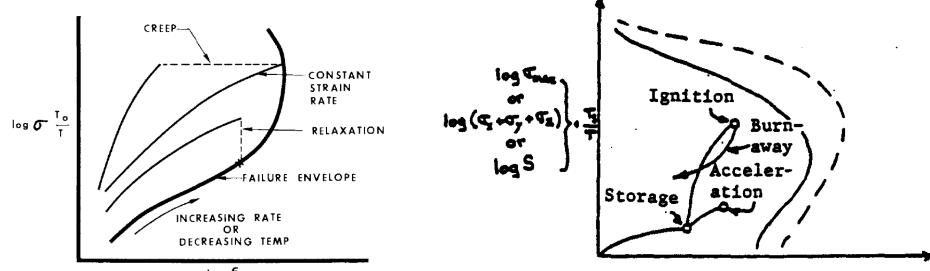




04/2022

- <u>Situation 4:</u> Material Performance
  - complete engineering design data set, required material properties, tolerances, environmental service limits, material degradation modes and associated models, and actual service exposure.



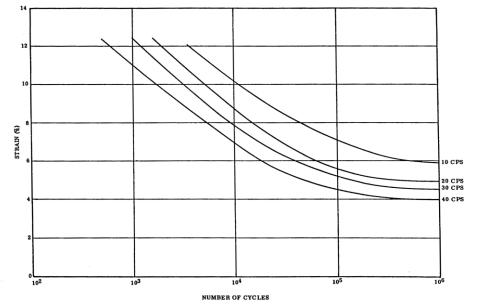



- Work in progress
  - Rupture
  - Fatigue & Damage
  - Impact and Shock
  - Thermal Fatigue
  - Activated Process: Diffusion



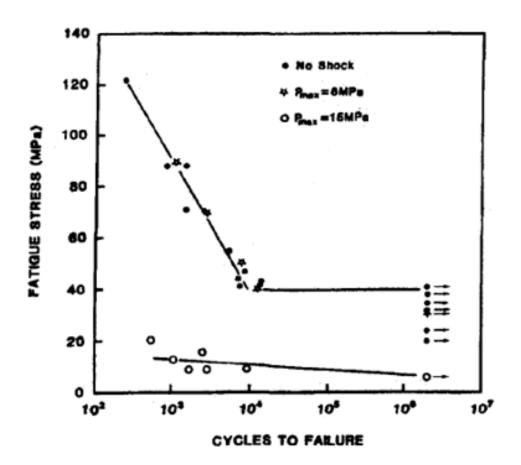
#### • Rupture

 Smith Failure Envelope – used for rubber components, some solid rocket motor formulations









- Miners Rule:  $C = \sum_{i=1}^{j} \frac{n_i}{N_i}$
- But order and frequency of loads affect count for polymeric materials
- Incorporate damage into constitutive models to account for effects of damage on strength

$$\sigma' = \frac{\sigma}{1 - D}$$





- Account for effects of other events:
  - Here impact and shock on fatigue life of composite panels





- Over 100 different models in the literature
  - Most of these never in use
- Six popular categories in use:
  - Linear damage accumulation, frequency separation, ductility exhaustion, strain range partitioning, total strain – strain range partitioning, strain energy partitioning
  - No one model is the best
- In practice:
  - Model developed for a material and expected environmental conditions
  - Model validated by in-service monitoring



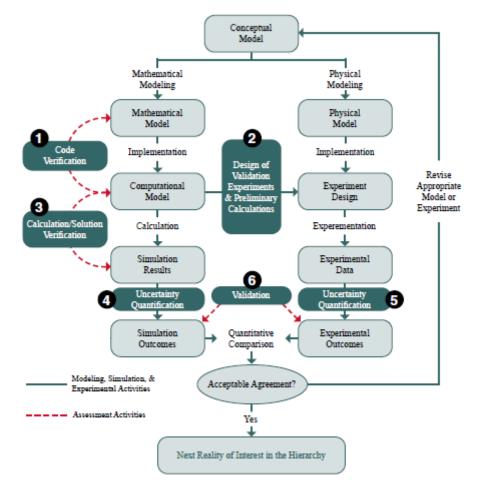
- A general form for the reaction rate constant is:  $k = A_0 T^n e^{\binom{-E_a}{RT}} e^{f(s)[C+D/RT]}$
- Reaction rate for consumption of, say, A:  $\frac{dN_A}{dt} = -k [A]^{\alpha} [B]^{\beta}$
- Similar dependency for diffusion and creep:  $D = D_0 e^{\binom{-E_a}{RT}} \ln \frac{\partial \varphi}{\partial t} = D \nabla^2 \varphi \qquad \text{and} \quad \dot{\varepsilon} = A_0 e^{\binom{-E_a}{RT}} 2 \sinh\left(\frac{\omega}{RT}\right)$
- Diffusion can be influenced by:
  - o Stress
  - Other diffusing species



Ο

• Six different groups across two to four materials

Each equation requires initial conditions


- Each material / species represents one differential equation
  - Two (or more) parameters to be fit for each equation
- Plasticizer  $\rightarrow$ Aziridine bonding agent Plasticizer/stabilizers Mobile Mobile curative reactive species Mobile curative Propellant Case Insulation Liner

- $\mathbf{D} = D_0 e^{\left(\frac{-E_a}{RT}\right)}$
- Considering the arrows, have 24 equations
  - 48 parameters
  - 24 initial conditions starting ..
  - May need to account for stress
  - Diffusion cross coefficients
  - Uncertainty and error





- Continuous, ongoing process
- Not well covered in research and academia
  - Very few peer review articles
  - Includes uncertainty quantification
- It is a disciplined, rigorous, and often underestimated, process





### Summary

- The System in which the Algorithm Operates
  - o "End-of-life"
  - National munition safety practices
- Four Situations for Algorithms
- The Algorithms
  - Verification and Validation
- MSIAC developing technical report to collect the most common age-induced degradation mechanisms