WSTC 0174 Novel Explosive Filling Project: A Systems Approach

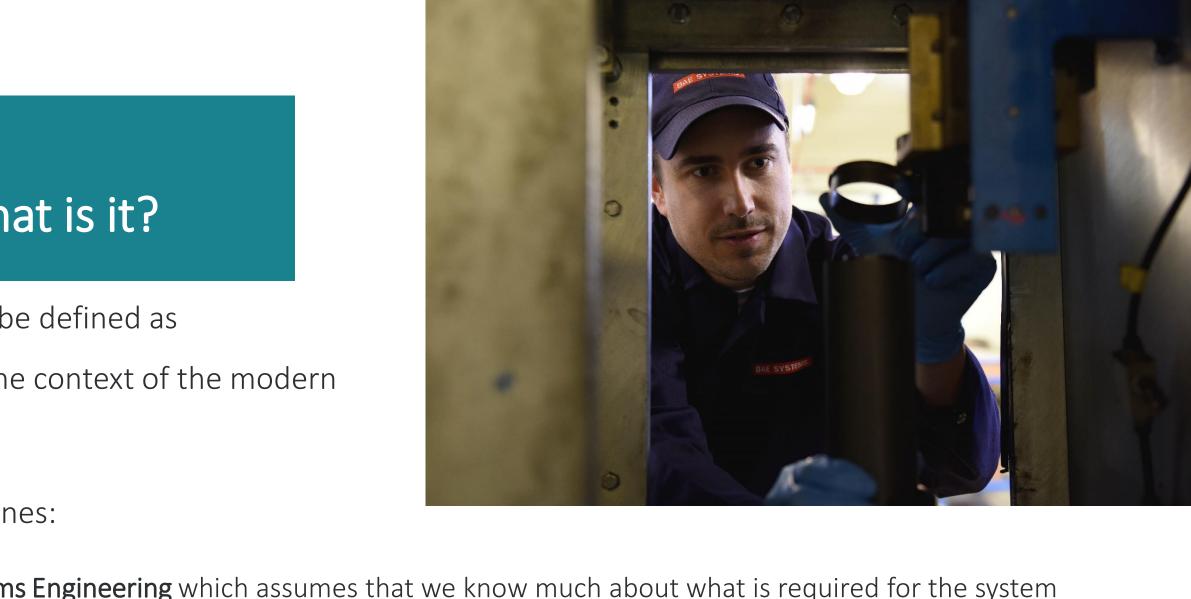
Rhys Jobbins B.Eng (Hons) M.Sc

Novel Fills Approach **Project Aim**

To use Systems Engineering in the development of a range of Polymer Bonded Explosive formulations that are unmixable in a planetary mixer and require the unique mixing action associated with a Resonant Acoustic Mixing.

The goal for the PBneXt Material is to provide a high performance blast/frag filling.

- The new material will encompass new material properties and processing capabilities as part of its inception and deployment.
- Given the multi aspect complexity of the task an investigative approach is needed not only to what is required from the new energetic material, but what additional emergent factors will need to be addressed is order to develop and implement PBneXt.



Novel Fills Approach Systems Engineering – what is it?

• Systems Engineering (SE) can simply be defined as

"understanding complexity" within the context of the modern world.

• Modern SE encompasses two disciplines:

Traditional "Hard" Mathematical Systems Engineering which assumes that we know much about what is required for the system across multiple perspectives and has a clear vision of what will be required.

Newer Investigative "Soft" Systems Engineering which encompass a journey of exploration in order to learn the problems associated

with the current energetic materials, processing, testing and application to products.

Therefore, it is important to understand where we are before deciding where we are going....

Types of Problem – PBneXt A New Explosive Material

Types of Problem

Know What

Quest

Stakeholders are very sure of *what* is to be done but unsure of *how* to achieve it

Don't Know How

Painting by Numbers

Stakeholders are very sure of *what* to do and *how* it is to be done

Foggy

Stakeholders are unsure of *what* and unsure of *how* to achieve it

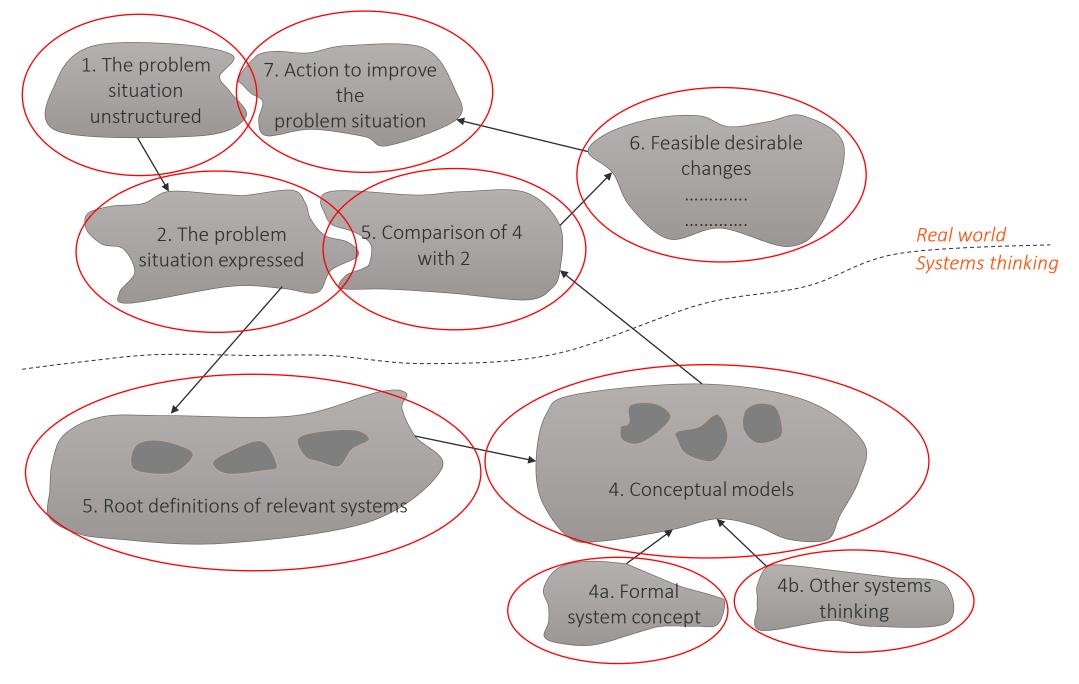
Movie

Stakeholders are very sure of how the change should be made but not what should be done

What

Don't Know

Know How



BAE SYSTEMS

(adapted from Eddie Obeng, 1995)

Systems Engineering for PBneXt The Analysis Method

Soft Systems Methodology (SSM)

(Adapted from Checkland, Systems Thinking Systems Practice 1999)

PBneXt – Approach The Problem Situation Unstructured

- We start by considering all the things that are wrong/problematic/challenging about the current warhead explosive materials from the perspective of the Explosive Material Formulation.
- We need to consider manufacturing and processing later, but for now lets just focus on the explosive materials.
- We will then assemble complimentary terms in a picture and remove duplication of terms.

PBneXt Material Problem Unstructured

PBNeXt Materials - Unstructured

SYSTEM REQUIREMENTS

- Clarity on specification tolerances for WH in order to meet customer requirements (Critical Features).
- Export or End User issues with components.
- Qualification costs and risk aversion.

SUPPLY CHAIN (Purchasing and Goods Inwards)

- Limited options.
- Cost of materials/feedstocks.
- Reliant upon supplier CoA/CoC.
- Shelf life of feedstocks.
- Reliant on old/outdated specifications/standards (e.g. DefStan.)
- Lack of availability of high performance or customised fillers.
- Suitability of generic grades for in house processes.
- Relationship between us and suppliers.
- Supply of feedstock (continuity of supply) e.g. nano Al, water & IPDI.

TECHNOLOGY GAPS

- Technical availability of higher performance energetic fillers.
- Simple analytical techniques.
- Availability of suitable (reliable and repeatable) tests to characterise materials

PROCESSING

- · Throughput hindered by curing time
- Unable to monitor quality during process.
- Long mixing times
- Difficult casting mechanism (Qz for example)
- Short pot life.
- Large quantities of waste material from standard processing.
- Inhomogeneous mix.
- Processing properties vary with time (gets worse with increasing viscosity).
- Handling hazardous materials.
- A high number of ingredients in the formulation

MECHANICAL PROPERTIES

VULNERABILITIES

ENVIRONMENTAL

- Substances hazardous to health and environment (AP/IPDI).

CHEMICAL PROPERTIES

- Current specs don't capture critical features.
- Binder feedstock specification.

- Ageing effects upon mechanical properties
- Variable mechanical strength.
- High plasticizer content dilutes binder efficacy wrt.
 - mechanical properties

- Fill Quality Voids
- Sensitive to friction/impact threats when containing high explosive content.
- Sensitive to void ignition under high setback/impact stress.
- Inherent IM properties of energetic feedstocks made by
 - traditional processing methods (crystal
 - voids/cracks/imperfections???)

- Environmental concerns and demil.
- Energy demands of curing process
- · Reject material cannot be re-worked and must be burned.

- Leaching of plasticizer.
- Lack of understanding between cure temps and time.
- Integrity of bond between binder and filler.
- Density limitations on current energetic fillers.
- Separation of binder and solids (binder rich surfaces).
- Knowledge of how varying gty components affects bulk material properties.
- Relatively high thermal coefficient of expansion (relative to casing) - can cause defects.

PBneXt Approach The Problem Situation Structured

- We have highlighted the factors we consider to be challenging about current energetic materials.
- We now group similar issues to together into themes.
- Once we have a number of grouped themes, we consider if there are relationships between them?
- And the types of relationship......

2. The Problem Situation Structured

Rich Picture Key

Information Support **Financial Support**

Technical Data / Information

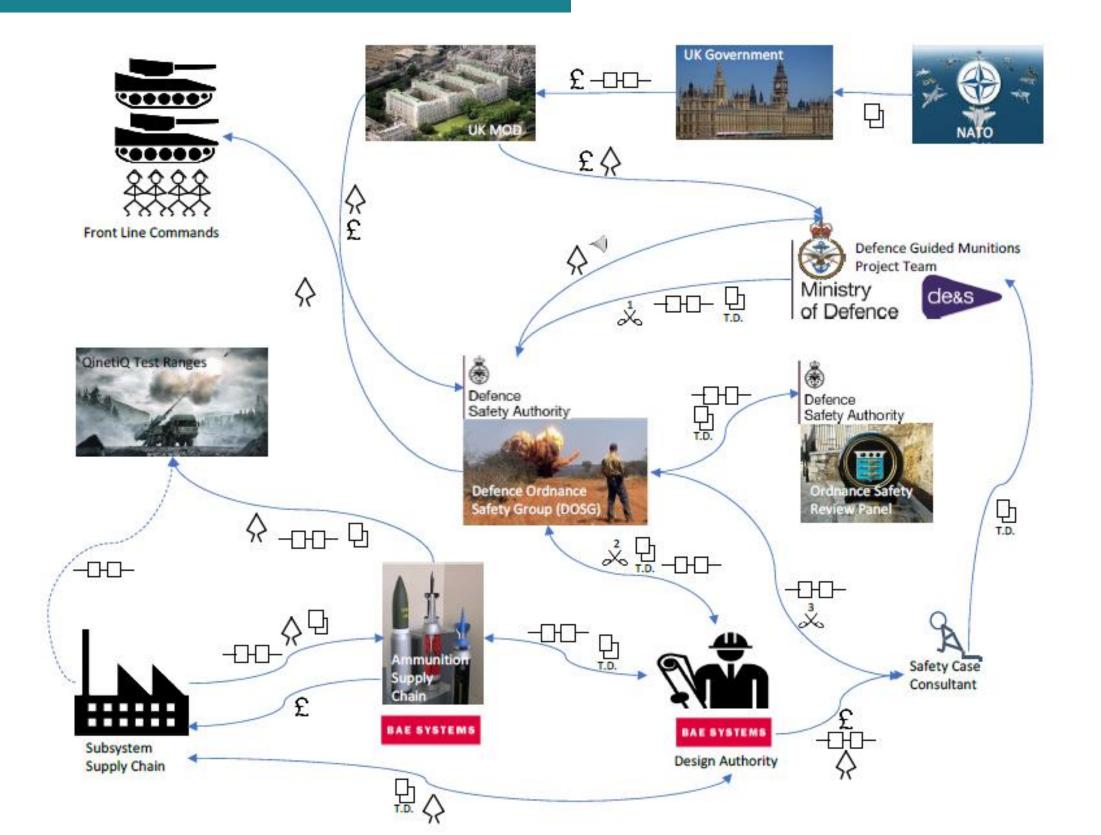
Directional Link

Conflict

Bidirectional Link

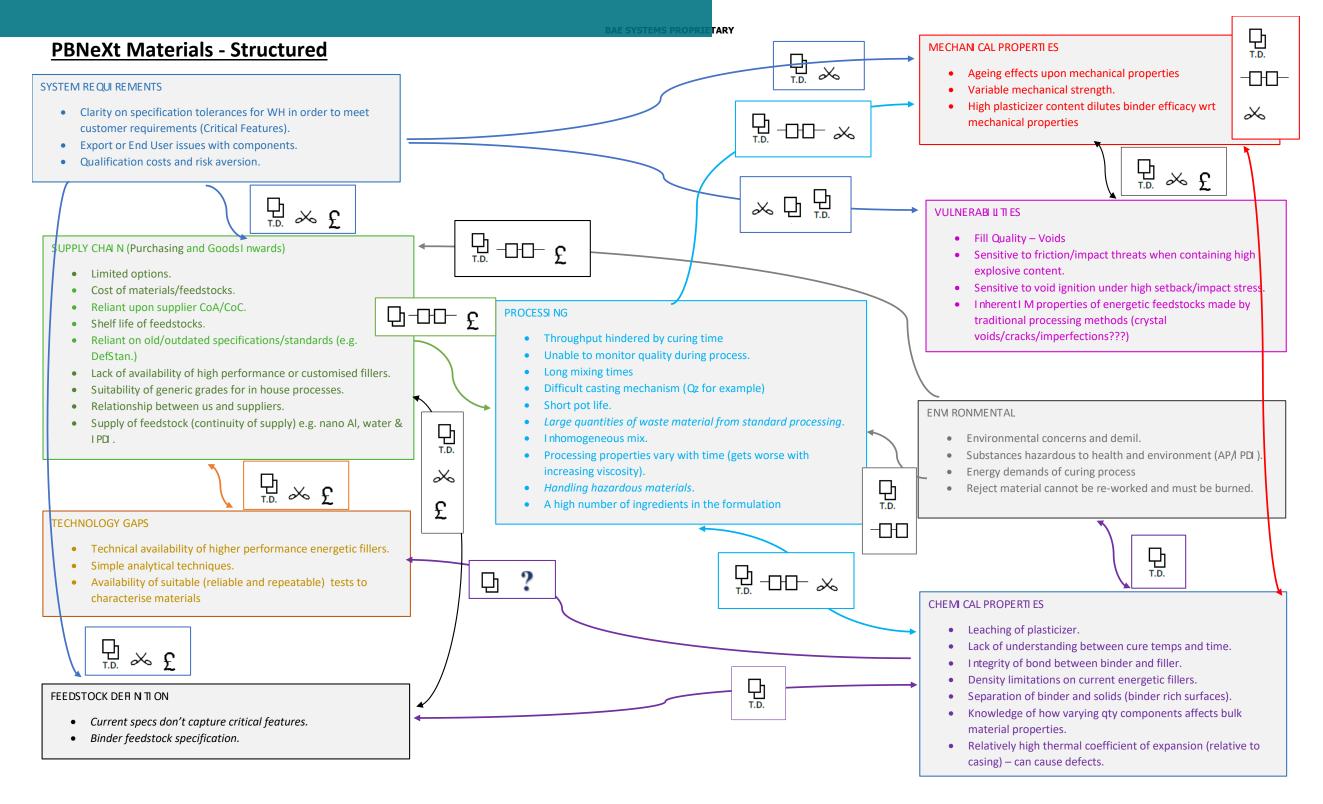
Intermittent Link

View


Process

Uncertainty

BAE SYSTEMS PROPRIETARY © BAE Systems


2. The Problem Situation Structured – An example of a Rich Picture

BAE SYSTEMS PROPRIETARY © BAE Systems

PBneXt Material Problem Structured

The Root Definition

- So having established some notion of the problems associated with Explosive Fillings and what challenges we face with current energetic materials and their processing, we now need to consider conceptual notions of how we may improve the situation.
- HOWEVER, we first need to bound the modelling such that we don't drift outside of an agreed boundary.

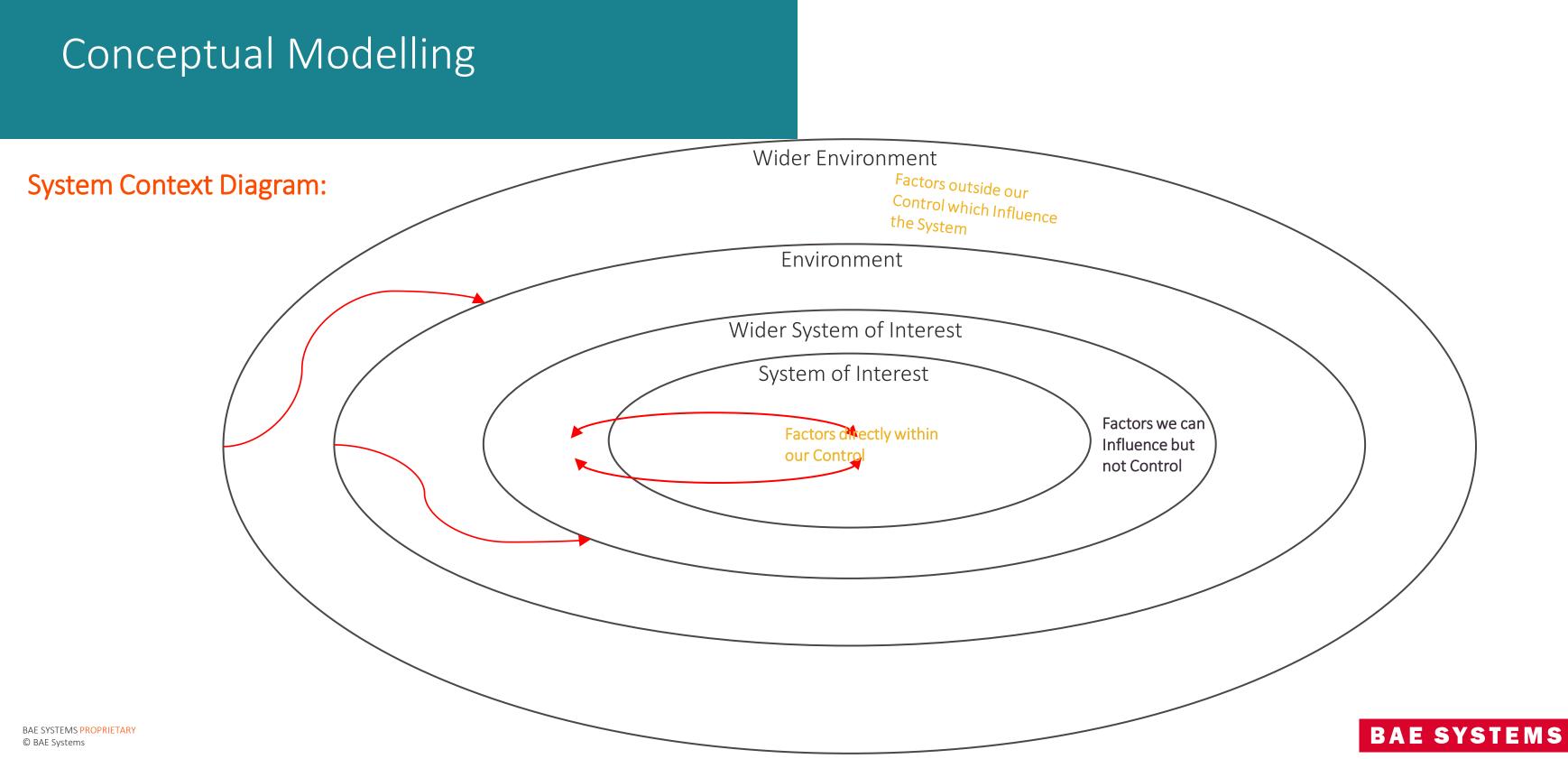
• The Root Definition simply defines a system to do What $\langle P \rangle$ by means of How $\langle Q \rangle$ in order to achieve Why $\langle R \rangle$.

P= A range of a la carte of Enhanced Blast Polymer Bonded Explosive formulations

- Q= Enhanced Formulation and Processing
- R= Enhanced Blast Performance

The Richer Root Definition

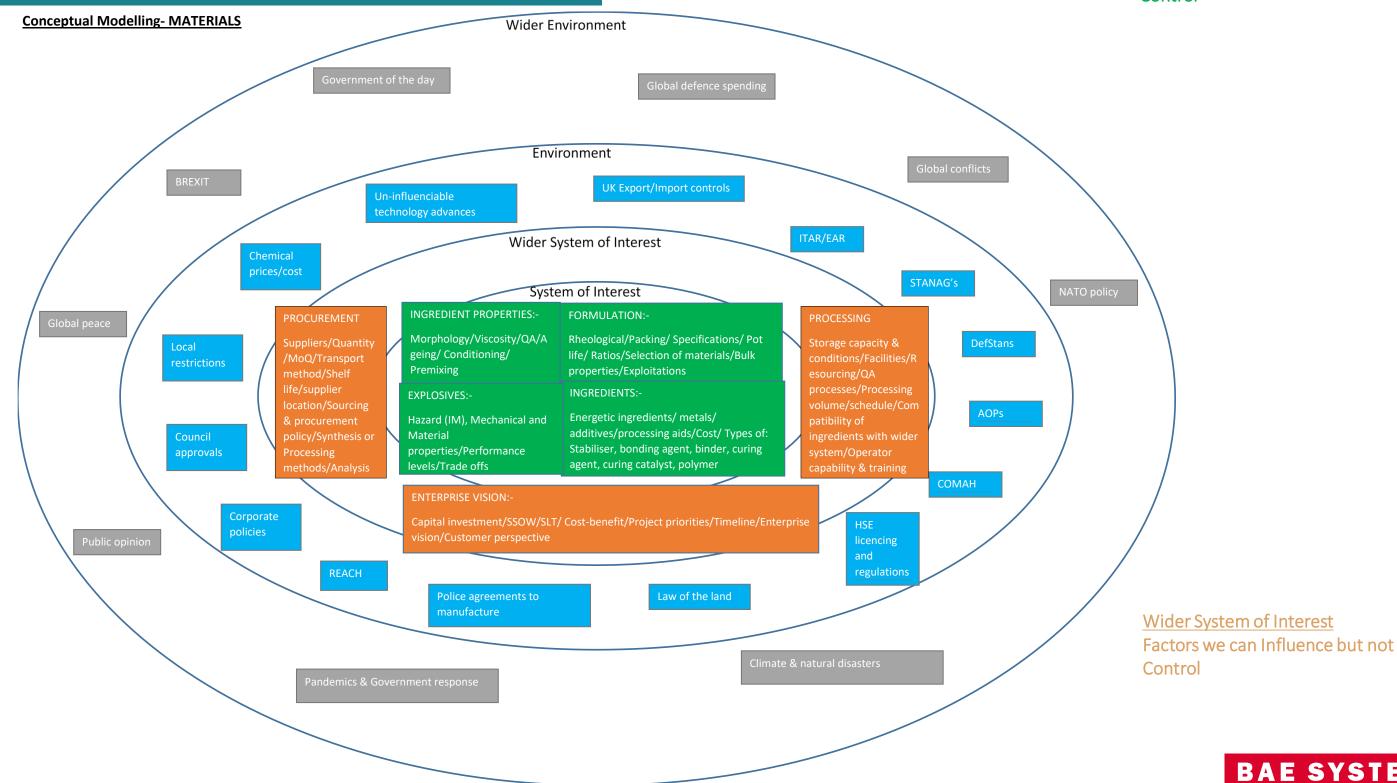
Customers = UK MoD


Actors = Land UK Energetics Team, Heavy Bomb and Payloads Team Transformation = Develop a new Explosive Formulation and Processing Capability Worldview = Land UK remaining the leading strategic supplier to defence contactors in order to enhance market share and profitability Owner = Land UK SLT, UK MoD, MBDA

We now expand this into a Richer Root Definition by means of the acronym CATWOE.

The victims of beneficiaries of T Customers Actors Those who would do T Transformation The conversion of input to output Weltanschauung the world view which makes the Transformation meaningful those that could stop T **O**wners **E**nvironmental Constraints elements outside of a system which are taken as a given

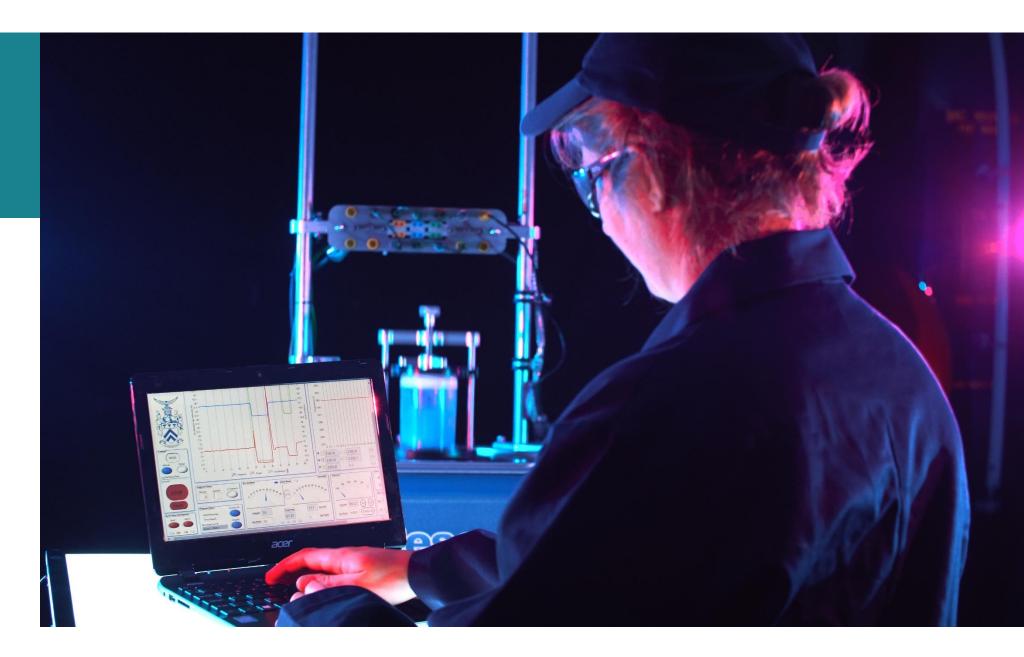
Env Constraints = Glascoed Processing, Revised Training and Skills, Suitable Resources and SQEP, R&D and Testing Capabilities, HSE Regulations, Funding


BAE SYSTEMS PROPRIETARY

Conceptual Modelling

- System Context Diagram
- System of Interest (Sol) the system in focus, i.e. PBneXt
- Wider System of Interest (WSoI) interacting systems or elements which we can influence but not have direct control over (Ammunition Design?)
- Environment that which effects the Sol but we cannot control
- Wider Environment Which affects Environment.
- Then we take what is within our Sol (and WSol) and conceptualise what we might do....

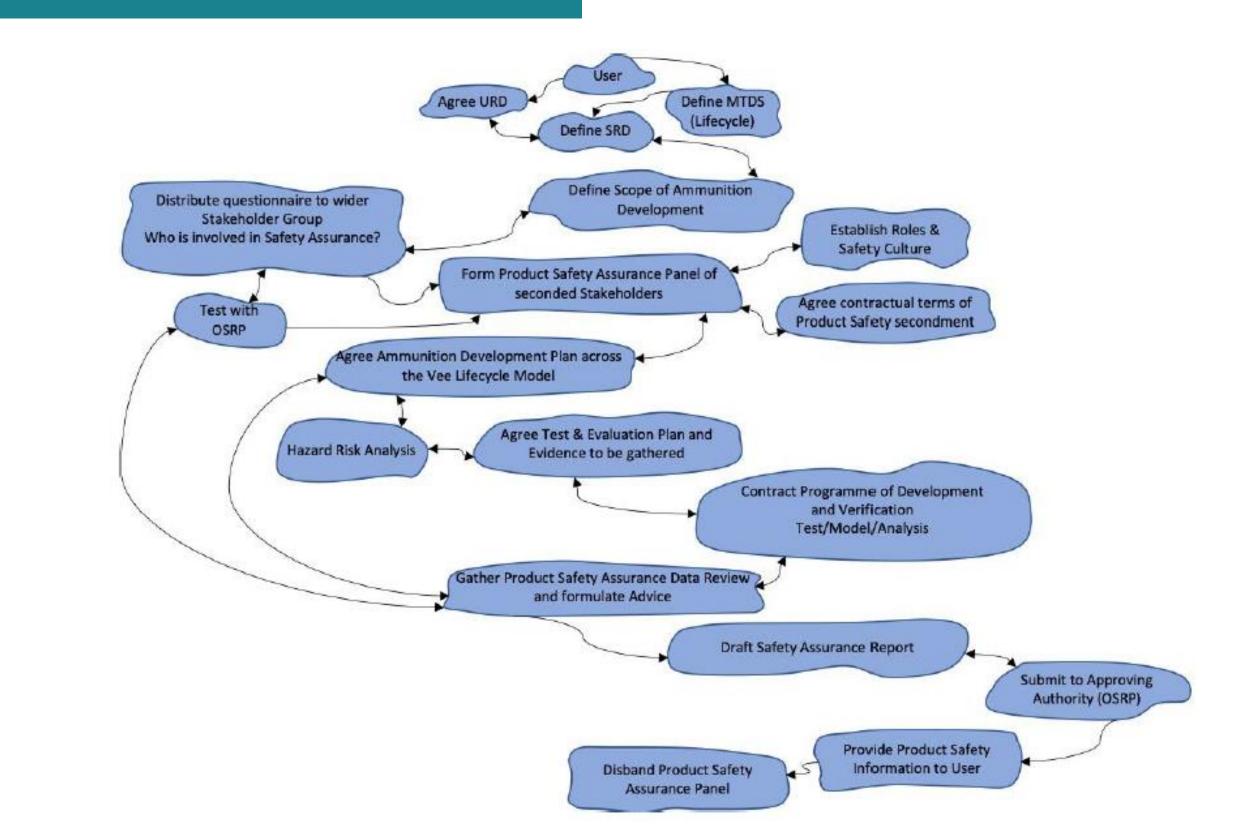
PBneXt Conceptual Modelling Material



System of Interest Factors directly within our Control

Conceptual Modelling

Things to remember about modelling:


- Modelling is an abstraction of reality.
- It is never universally right, but also never universally wrong.
- The benefit is to make us consider what needs to be done..... but perhaps more importantly to promote thought.

Therefore lets consider what is in the System of Interest and capture what we think we need to do.

Conceptual Modelling Example

PBneXt – Approach - Materials

PBNeXt Materials - Systems Concept

SYSTEM REQUIREMENTS

- Form System Requirements
- Better definition of critical features
- Better link between material/filling specifications and critical features

SUPPLY CHAIN

- Assess material supply chain
- Identify different curing components
- Expand supply chain
- Use cheaper ingredients
- Identify soreign capability of supply

TECHNOLOGY GAPS

- Research recyclable formulations
- Synthesize new energetic molecules
- Research alternative energetic binders
- Research multi-purpose materials
- Research suitable fuel sources
- · Investigate characterisation techniques not currently in use

FEEDSTOCK DEFINITION

- Tailored crystal/particle quality ingredients
- · Optimise material selection to reduce processing time
- Use more stable/robust ingredients
- Assess the need for specific components, e.g. plasticers
- · Understand the storage/conditioning requirements for the feedstock.

PROCESSING

- Material selection to match new mixing processing.
- · Processing method independent of pot life and cure time
- Optimise the crystal packing
- Understand and investigate curing reaction
- Understand the effect of catalyst use in the process. (quantity/when added)
- Simplify casting processes
- Understand tolerance or acceptability of manufacturing defects
- Improved in line monitoring

MECHANICAL PROPERTIES

VULNERABILITIES

- modes

ENVIRONMENTAL

- Reduce waste.
- Use low environmental impact ingredients.
- Use non-toxic ingredients

PERFORMANCE

- Optimise fuel/oxidiser ratio for application
- Understand effect of top and bottom raw material specs on product performance
- Use different energetic fillers
- Use different grades of materials or blends of grades
- Enhance blast performance

CHEMICAL PROPERTIES

- Understand full range of properties required by system (e.g.
 - mechanical property range)
- Improve mechanical properties
- Stabilise mechanical properties
- Increase mechanical strength of explosive

- Suitable storage conditions for raw materials
- Understand links between mechanical properties and failure
- Use reduced sensitivity ingredients

- Reduce energy demands of manufacturing processes
- Assess material for environmental impact.

- Understand ageing mechanisms
- Identify alternative binder polymers
- Understand what the limits are on the explosive material spec.
 - so as bulk properties are still acceptable

Compare the concept diagrams to the problem

At this phase we need to fully check the system concepts against the problem to ensure we have addressed the problems highlighted in phases 1 and 2 of SSM.

- Models are an abstract of reality, a snapshot of what might be.
- Models are never right, nor are they wrong.
- So its important that we get everything down that we may need, and then compare it to the problem space.
- Have we covered everything off (for now)?

Feasible and Desirable Changes

- OK so we have a notion of what we want to achieve but...
- We need to balance this again the realities of the business within which we operate.
- In this instance we reduce number of changes in line with what the business can practically implement within 12 months.

We may wish to characterise, design and manufacture Volvonium, the world most indestructible Swedish steel. However the reality is that we may not have the budget, enterprise backing nor SQEP to do so, therefore its important to consider what is feasible.

Feasible and Desirable Changes Material

PBNeXt Materials – Systems Concept

SYSTEM REQUIREMENTS

- Form System Requirements
- Better definition of critical features
- Better link between material/filling specifications and critical features

SUPPLY CHAIN

- Assess material supply chain
- Identify different curing components
- Expand supply chain
- Use cheaper ingredients
- Identify soveign capability of supply

TECHNOLOGY GAPS

- Research recyclable formulations
- Synthesize new energetic molecules
- Research alternative energetic binders
- Research multi-purpose materials
- Research suitable fuel sources
- Investigate characterisation techniques not currently in use

FEEDSTOCK DEFINITION

- Tailored crystal/particle quality ingredients
- Optimise material selection to reduce processing time
- Use more stable/robust ingredients
- Assess the need for specific components, e.g. plasticers
- Understand the storage/conditioning requirements for the feedstock

PROCESSING

- Material selection to match new mixing processing
- Processing method independent of pot life and cure time
- Optimise the crystal packing
- Understand and investigate curing reaction
- Understand the effect of catalyst use in the process (quantity/when added)
- Simplify casting processes
- Understand tolerance or acceptability of manufacturing defects
- Improved in line monitoring

ENVIRONMENTAL Reduce waste

PERFORMANCE

- Optimise fuel/oxidiser ratio for application
- Understand effect of top and bottom raw material specs on product performance
- Use different energetic fillers
- Use different grades of materials or blends of grades
- Enhance blast performance

CHEMICAL PROPERTIES

BAE SYSTEMS PROPRIETARY

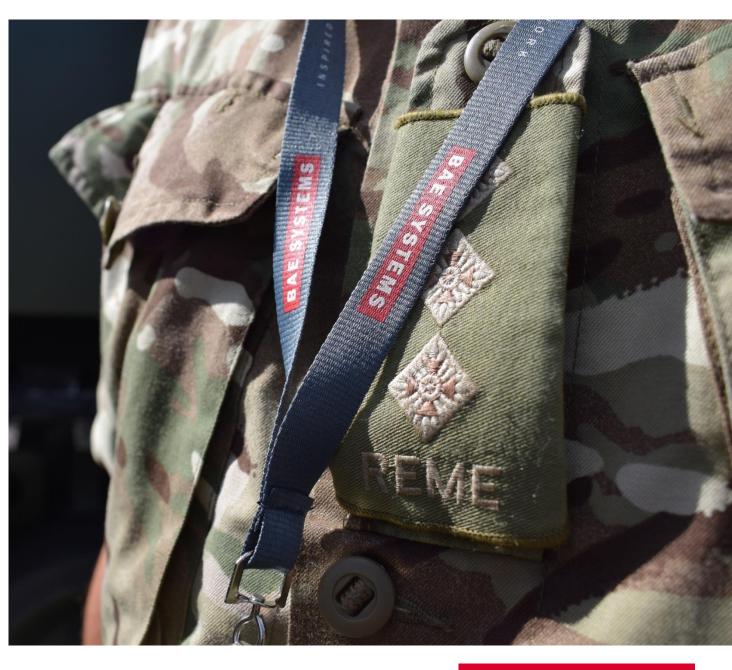
BAE SYSTEMS PROPRIETARY © BAE Systems

Green = What is achievable within 12 months **Red** = What remains in the scope of PBneXt

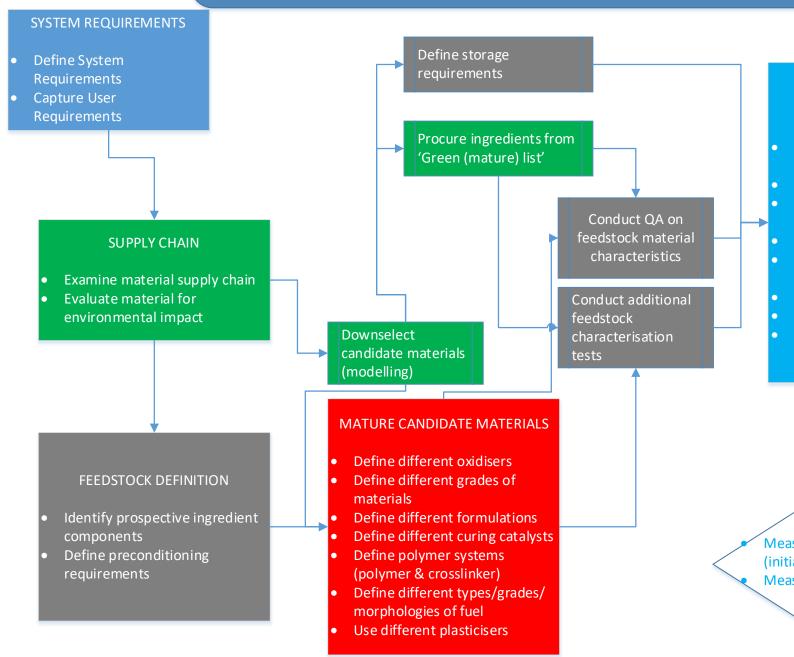
MECHANICAL PROPERTIES

- Understand full range of properties required by system (e.g.
 - mechanical property range)
- Improve mechanical properties
- Stabilise mechanical properties
- Increase mechanical strength of explosive

VULNERABILITIES


- Suitable storage conditions for raw materials
 - Understand links between mechanical properties and failure modes
- Use reduced sensitivity ingredients

- Use low environmental impact ingredients
- Reduce energy demands of manufacturing processes
- Use non-toxic ingredients
- Assess material for environmental impact.


- Understand ageing mechanisms
- Identify alternative binder polymers
- Understand what the limits are on the explosive material spec
 - so as bulk properties are still acceptable

Action to improve the problem situation

- We should have a number of ideas of what we want to change, why they are important and an appreciation that they are within the scope of what is achievable.
- We can start by listing these and then turn them into functional system requirements.
- Functional requirements are best structured in Verb Noun sequence which describes the manner to enact a change.
- i.e. stabilise energetic, provide braisance, control temperature.
- Let assemble the functional requirements for PBneXt Material.

PBneXt Refined Approach

MATERIAL FUNCTIONS TIMELINE

FORMULATION PROCESSING

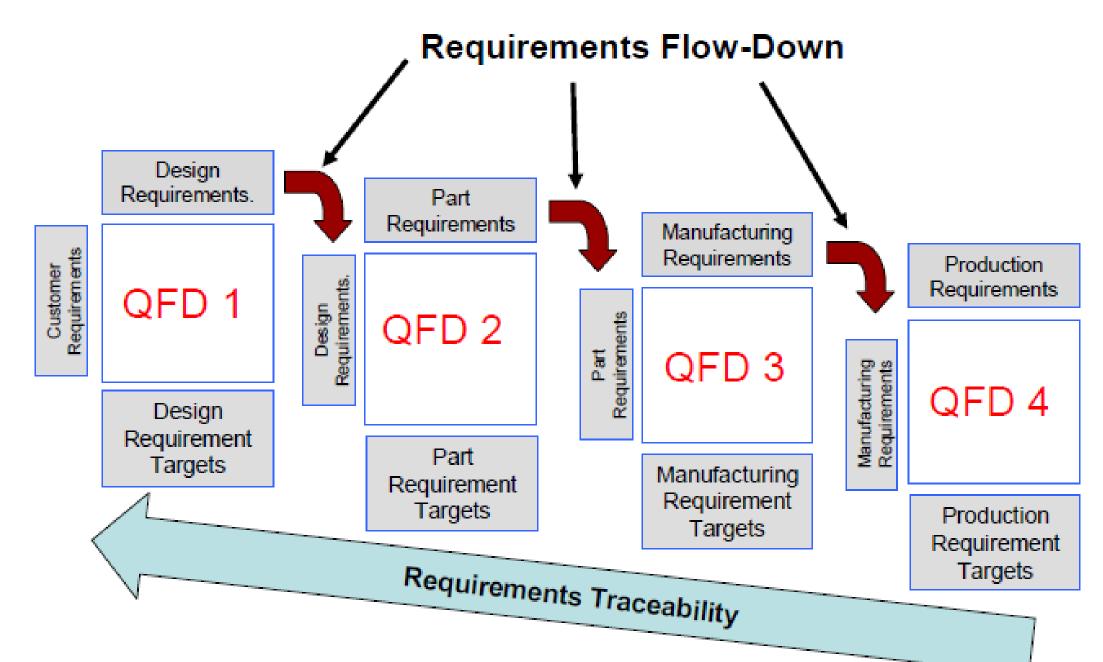
- Downselect material (to match
- new mixing process)
- Optimise the crystal packing
- Optimise fuel/oxidiser ratio (for application)
- Achieve mechanical properties Formulate to enhance blast
- performance
- Define binder/solids ratio
- Predict blast performance
- Define plasticiser requirement

Measure shock sensitivity (initiation system) Measure mechanical properties

Where do we go next?

- Having completed the Seven Steps of SSM we are now in a position of taking action to improve the problem space.
- The final activities of SSM involved us considering the functional requirements for the energetic material.
- We now need to evaluate the relative importance of these at each level of abstraction (or layer).
- This should lend itself to Quality Function Deployment (QFD).

Where do we go next?


Quality Function

Deplo	bymen	t	LIST 2 of Requirements												
			ltem A	Item B	Item C	ltem D	:		:						
		Item 1	•	$\overline{\mathbf{o}}$		Δ									
		Item 2													
	LIST 1 of Requirements	Item 3			0	\triangle									
	l of irem	Item 4		0	\bigtriangleup										
	LIST 1 of Requiren														
	ЦÄ														
			Items related to item A	Items related to item B	Items related to item C	Items related to item D									
			LIST	3 mar	ny-to-or	ne relat	ed with	n List 2							

Reproduced with permission (Burge Hughes Walsh, 2007)

QFD Flowdown – The levels of decomposition.

Reproduced with permission (Burge Hughes Walsh, 2007)

User Requirements:

Generally the User will supply a list of User Requirements, these are normally vague, hard to quantify and usually encompass considerations for Ammunition such as:

- Safe
- Reliable
- Accurate
- Lethal
- Development Cost
- Manufacturing Cost
- Long Life
- Legally Compliant
- Maintainable

PBneXt – QFD 1 System Requirements

The User would normally provide these as part of a System Requirements Document (SRD). However we haven't got that luxury yet.

At this point in time we need to try to think what the customer may want the Ammunition to do (Verb/Noun again).

For example:

- **Provide Blast Overpressure**
- Control Ignition
- Seal from Environmental Effects

PBneXt – Approach

MATERIAL FUNCTIONS

SYSTEM REQUIREMENTS

Define System Requirements Capture User Requirements

FEEDSTOCK DEFINITION

- Identify prospective ingredient components
- Define preconditioning requirements
- Define storage requirements
- Conduct QA on feedstock material characteristics
- Conduct additional feedstock characterisation tests

SUPPLY CHAIN

- Examine material supply chain Evaluate material for
- environmental impact
- Downselect candidate materials (modelling)
- Procure ingredients from 'Green (mature) list'

MATURE CANDIDATE MATERIALS

- Define different oxidisers
- Define different grades of materials
- Define different formulations
- Define different curing catalysts
- Define polymer systems (polymer & crosslinker)
- Define different types/grades/ morphologies of fuel
- Use different plasticisers

- process)
- Optimise the crystal packing
- Optimise fuel/oxidiser ratio (for application)

- Define binder/solids ratio
- Predict blast performance
- Define plasticiser requirement
- system)

FORMULATION PROCESSING

Downselect material (to match new mixing

- Achieve mechanical properties
- Measure mechanical properties
- Formulate to enhance blast performance
- Measure shock sensitivity (FCASW initiation

PBneXt User Requirements:

- Safe
- Reliable
- Accurate
- Lethal
- Throughlife Cost
- Purchase Cost
- Long Life
- Legally Compliant
- Modular
- Secure Supply Chain
- Tuneable Output
- Stealth
- Manufacturing Flexiblity
- Environmentally Sound
- All Weather

- Safe handling in theatre
- Safe handling in storage
- Safe handling in transport
- Cope with temp
- Cope with vibration
- Cope with drop
- Cope with humidity
- Chemical Compatibility
- Survive launch
- Interface with system

PBneXt System Requirements:

- Made in Small Volumes
- Provide Blast Overpressure
- Manufacture Agility
- Seal from Environment
- Prevent Accidental Ignitions
- Contain Explosive
- Maintain Stable Unit Price
- Control Ignition
- Endure Lifecycle
- Survive Thermal Environment
- Shock Resistance
- Provide Energy Density
- Interface with Structure
- Penetrate Target
- Defeat Target

- Survive Implantation
- Survive Flight
- Survive Launch Environment
- Provide Compatible Mass
- Generate Heat
- Made from Commodity Materials
- Predictable Degradation
- Facilitate Disposal
- Facilitate in-service surveillance
- Survive Tactical Environment
- Survive Countertmeasures
- Survive Logistic Environment
- Comply with Volume Limitations

QFD 1 Matrix: Ammunition Level

ACTIVITY SUMMARY																														
War	head Functionality	Importance	Made in Small Volumes	Provide Blast Overpressure	Manufacture Agility	Seal from Environement	Prevent Accidental Ignitions	Contain Explosive	Maintain Stable Unit Price	Control Ignition	Endure Lifecycle	Survive Thermal Environment	Shock Resistance	Provide Energy Density	Interface with Structure	Penetrate Target	Defeat Target	Survive Implantation	Survive Flight	Survive Launch Environment	Provide Compatible Mass	Generate Heat	Made from Commodity Materials	Predictable Degradation	Facilitate Disposal	Facilitate in-service surveillance	Survive Tactical Environment	Survive Countertmeasures	Survive Logistic Environment	Comply with Volume Limitations
Key Use	r Requirements																													
Safe	-	10	1	3	1	9	9	9	3	9	3	9	9	9	9		1	3	9	9	1	3	1	9	3	1	9	1	9	1
Reliable		10		1	1	9	1	1		9	3	3	9		1	9	9	9	9	9	1	1		9			3	9	9	
Accurate		10														9	9	9	3	3	1							3	3	1
Lethal		10		9		3	1	9		9	1	1	3	9	9	9	9	9	3	3	3	9	3	3			9	3	1	3
Throughlife	e Cost	10	1			3	3	1	9	1	9	1		1							1		9	3	3	3	1		3	
Purchase (10	9		3		3	1	9	1	3	1		1							1	1	9	3	1					[]
Long Life		10	1			9	1	1	1		9	3	9	3	3				9	3			3	9		9	9		9	
Legally Co	mpliant	10					9	9	1	1				3					1			1	1		3				1	
Modular		10			3	1		3		3	1				3	3	3	3			1				1	1	1		1	1
Secure Su	pply Chain	10	1		9				9		1			1									9							
Tuneable C		10		9				9		9				9	3	9	9	3			1	1								1
Stealth	·	10															9		3								1	9		
Manufactur	ring Flexiblity	10	9		9		1	1	1					1	1								9		1					3
Environme	ntally Sound	10	1			3		3	1		1			1									1	1	9					
All Weathe		10				9	1				3	1	1		1		9		1	1							1		3	
			230	220	260	460	290	470	340	420	340	190	310	380	300	390	580	360	380	280	100	150	450	370	210	140	340	250	390	100
	Target																													
	Benchmark																													

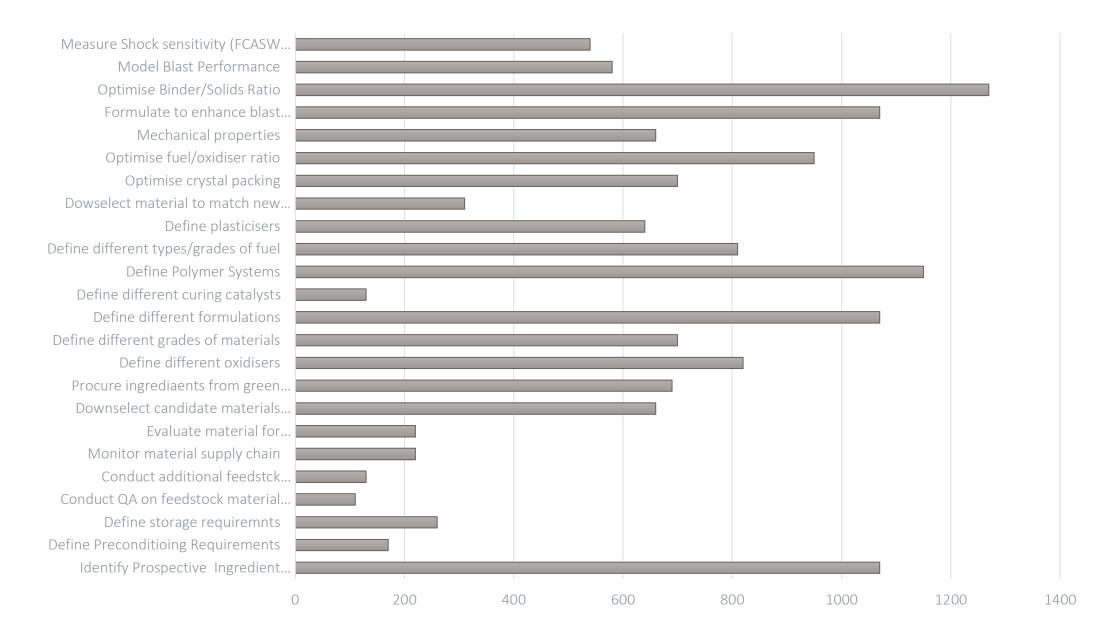
QFD 1 Graph: Ammunition Level

Functional Importances Chart

Comply with Volume Limitations						
Survive Logistic Environment						
Survive Countertmeasures						
Survive Tactical Environment						
Facilitate in-service surveillance	2					
Facilitate Disposa						
Predictable Degradation	1					
Made from Commodity Materials	5					
Generate Heat						
Provide Compatible Mass	5					
Survive Launch Environment						
Survive Flight						
Survive Implantation)					
Defeat Target						
Penetrate Target						
Interface with Structure						
Provide Energy Density						
Shock Resistance						
Survive Thermal Environment						
Endure Lifecycle						
Control Ignition						
Maintain Stable Unit Price						
Contain Explosive						
Prevent Accidental Ignitions						
Seal from Environement						
Manufacture Agility				-		
Provide Blast Overpressure						
Made in Small Volumes	5	l				
	0	100	200	300	400	500

BAE SYSTEMS

600


QFD 2 Matrix:

TIVITY SUMMARY																									
Design feature	Importance	Identify Prospective Ingredient components	Define Preconditioing Requirements	Define storage requiremnts	Conduct QA on feedstock material characteristics	Conduct additional feedstck characterisation tests	Monitor material supply chain	Evaluate material for environmental impact	Downselect candidate materials (modelling)	Procure ingrediaents from green mature list	Define different oxidisers	Define different grades of materials	Define different formulations	Define different curing catalysts	Define Polymer Systems	Define different types/grades of fuel	Define plasticisers	Dowselect material to match new mixing process	Optimise crystal packing	Optimise fuel/oxidiser ratio	Mechanical properties	Formulate to enhance blast performance	Optimise Binder/Solids Ratio	Model Blast Performance	Measure Shock sensitivity (FCASW Initiation svstem)
Functionality																									
Made in Small Volumes	10	1		1			1			9			3				1	1		3		3	3		
Provide Blast Overpressure	10	9		•		1			9		9	9	9			9	•	•	9	9		9	9	9	
Manufacture Agility	10	3	3	3	1	1	3	3		9	1	1	3	3	3	1	1	9	1	3	1	3	3		
Seal from Environment	10		1	1								•			9		3								
Prevent Accidental Ignitions	10	3	1	1					3		1	1	3		9		0		1	3	1	3	3	3	
Contain Explosive	10	9		•					9	9	9	9	9	3	9	9	3		9	9	1	9	9	9	3
Maintain Stable Unit Price	10	3	1				9	1		9			1	Ŭ	1		1	3		1	•	1	1		
Control Initiation	10	9			1	1		•	3		1	1	9		<u> </u>	1	•	<u> </u>	1	9		9	9	3	9
Endure Lifecycle	10	3	3	9		•		3			•	•	3	3	9		9			1	9	3	3		
Survive Thermal Environment	10	3	3	3							1	1	3	Ŭ	9	1	9		1	1	3	3	3		
Shock Resistance	10	9				1			3		1	1	3		9	1	9		1	3	9	3	3	3	9
Provide Energy Density	10	9							9	3	9	9	9		9	9		9	9	9		9	9	9	
Interface with Structure	10	1								1											3				9
Penetrate Target	10	1																							
Defeat Target	10	9							9	9	9	9	9			9		3	9	9		9	9	9	9
Survive Warhead Implantation Survive Flight	10 10	3		1	1	1			3		3	3	3	1	9	3	3 3	3	3	1	9	3	9 3	3	9
Survive Launch Environment	10	3		1	1	1					1	1	3		3	1	3		1	1	3	3	3		
Provide Compatible Mass	10	1								1	3	3	3			3			3	3		3	3		
Generate Heat	10	9							9	3	9	9	9			9			9	9		9	9	9	
Made from Commodity Materials	10	9			1	1	9	3	9	9	9	9	9	3	3	9	1	1	9	9		9	9	1	
Predictable Degradation	10	1	3	3	3	3		3		3	3	1	3		9	3			1	1	3	3	3		
Facilitate Disposal	10	1						9		1	9	1	3		3	9			1	1	3	3	3		
Facilitate in-service																									
surveillance	10	1		1	3	3				3	3	1	3			3			1	3		3	3		
Survive Tactical Environment	10	3	1	1									3		9		9	1		3	9	3	9		3
Survive Countertmeasures	10																								
Survive Logistic, Environment	10	3	1	1									3		9		9	1		3	9	3	9		3
AE Systems		1070	170	260	110	130	220	220	660	690	820	700	1070	130	1150	810	640	310	700	950	660	1070	1270	580	540

QFD 2 Graph:

Functional Importances Chart

BAE SYSTEMS PROPRIETARY © BAE Systems

What after QFD?

- We will have ranked the criticality of the functional requirements.
- Do we now consider the various means how we may achieve it?
- Function Means Analysis

				FUNCTION	- M =
System: Intelligent I	Dish Washer	Sub-System		Date: 1 April	Autho
FUNCTION		1			
Detect Load Make Up	Bar coded Items	Vision recondition	and recognition	Ultrasound	Ele
Measure Water Hardness	Hardnes	Installation defined	User defined		
Load Dirty Itema	Bottom Hillige Door	Slide door Hinge	Top Door	2 Sliding Baskets	•
Unload Cleaned Items	Bottom H nge Door	Slide over Hinge	Top Door	2 Sliding Baskets	
Load Cleaning Agents	Pullout ay	In-door compariment	In-door Hopper	in machine body	N
Fill Water	Gravity feed	Main Water pressure	Reciprocating Pump	Rotary Pump	Cent
Drain Water	Gravity feed	Vaporisation	Reciprocatin Famp	Rotary Pump	Cent
Heat Water	Electric Electric	Gas Burner	House hot suppy and mix with or d	Solar	
Wash	Rotating Spray arm - one off	Rotatin Spray arm – wo off	Wall mounted ets	Emersion	The second se
Rinse	Rotating Spray arm - one off	Rotating Spray arm – two off	Wall Mounted ets	Emeration	N N
Dry Contents	Electric	Gas burner	Blow of	Left wet	Left
Select Cycle	Clockwork dial - user defined	Fuzz Logic	Neural Network	Rule Basec System	De
Control Cycle	Clockwork Controller	Microprocessor and sortware	Signal Processor	PLI	
Receive User Input	Dial	Switches/buttons	LCD touch screen	Plasmi touch	S.
Display User Messages	Dial	Switches/buttons	L CD to b scree	Plasm stouch	le
Support	Metal Sta-	Mnocoque	Back-plate Chantin	Force field	
Protect	Steel Casing	moute plastic	Carbor Fibre	Steel side/back casing with plastic facia	
Interface to services	Standard 10/65	Sn p-fit conjectors	Fully plumbed in		
	7	7			-

ANS ANALYSIS CHART Reviewed: D. Dirt or: S Clean Issue: 1.0 MEANS Position Indicators In baskets **U**ltrain Mass Corveyo Coveyor No cleaning agents rifugal Pump trifugal Pump Clean and recycle water Mater distant in the wet and har dry Spin dry eterministic: equation Look up table **Fixed one cycle** ASIC Analogue hardwired **Digital hardwired** Carris and gears oft key pad Hard key pad Mobile phone as remote Volce recognitio TV style r Audible -oudspeaker LCD in TV style remote **Nobile phone**

BAE SYSTEMS

Reproduced with permission (Burge Hughes Walsh, 2007)

Function Means

- Four concepts are shown with one as a baseline.
- The means of achieving each function is highlighted for each concept.

Function		_											_		
lix Acoustically	RAM Batch 📍	RAMICAM	RAM MIX IN CASE	PAINT SHAKER	ETF SHAKER	RAM 5	RAM 55	LAB RAM 2							
Inderstand Viscosity Limits of Process	Rheological modifiers	In-line viscosity measurements	SQEP knowledge	Literature review	Viscometer) Rheometer	Mix trials	Design of experiments	Understand filling technique (limits of tooling/method)	Pot life / curing trials	Review internal studies	bespoke rheometer (scaled up 'capillary')	Shore A hardness		
Design Mix Regime for Ease of Scale	Rheology	SQEP knowledge	Industry knowledge	DoE	In-line monitoring	One pot mixing	Blocked isocyanate (time would be no issue)	Minimise process steps	Recipe mode mixing	Optimal shop layout (flow)	One-clip" fixture	Utomated recording/monitor of key parameters (alarm system)			
Optimise Mixing Parameters	DoE	SQEP knowledge	Industry knowledge	Mix vessel design	Transparent vessel	 line assessment of mix completeness (FTNIR?) 	In-line X-ray / CT- scanning) time	emperature) vacuum	acceleration	incorporation	o degas		
.oad Ingredients into Mix Vessel	SQEP knowledge	Industry knowledge	Auto loading hoppers	Multi feed with pre- mix for single loading	Individual dispensation in sequence	Manual Loading	Automatic dispenser Loading from feed stock supply held separately	Auto dosers	Robots	prepolymers (polymer/isocyanat e combo)	Premixes	Heated dosers	Udder type systems for multiple weighing (MIC)	Coke/ice-cream dispenser type system (formulation menu)	weigh in by han
ill Uniformly (No Voids)	SQEP knowledge	Industry knowledge	Speed of fill	Viscosity of mix	Angle of fill	Fill tools	Fill under vibration	Pass vehicles over shaker plate to vibrate	Fill under vacuum	Check quality and form through NDA techniques - Ultrasound?	MIC with good degassing	Vacuum casting	Vibration / agitation	Degas during mix regime	Have a formula that can withsta munitions usag with voids
Define Production Processing Requiremnts	Determine effects of dwell times	SQEP knowledge	Industry knowledge	Engage with Ops	● SOPs	● PCPs	Mix Cards	Automated recipes	Customer requirements (throughput)	From trial outcomes	total mass	define nett explosive quantity	daily throughput	fast changeover (SMED)	
)esign Filling Tooling Needed	SQEP knowledge	lndustry knowledge	Finish on the tooling for flow	Geometrics for flow control	Question - What complexity of fill is expected - monolithic chrge with external or integrated initiation inputs	Customer requirements	From trial outcomes (dependent on formulation)	MIC - single or multiple	Vac cast attachments	External designers	Neir plates	CAM set-up	Design to incorporate sample manufacture	In house design	Procure Falcor designs
Prepare Vehicles Prior to Filling	Enusure correct finish	Treat to ensure adherance to case wall	Condition vehicles to match mix temp	ldentify subsidiary hardware and furniture	If warhead casing/component involved need for thorough understanding of form and energetic	Adjacent lining facility	Cleanliness check	Labelling / stencilling (bar codes?)	Pre-weigh	temperature condition	Diner / Mix In Case Trials	Optimise Liner Properties			
standardise curing process	IPDI in excess to account for NCO content variation	Establish best curing agent for process	Premix HTPB and cure catalyst	Shore A and gel time experiments to determine optimat cure time and temp	0	SQEP knowledge	Industry knowledge	Curing trials (inc. material analysis - mechanicals)	Calculate curing time	Dedicated curing facility	● PCPs/SOPs	Operator training	Standardise across different formulations	Optimise curing components (e.g. NCO/OH ratio)	ldentify cure verification test
Conduct Gel Time Testing	ereate database of results for reference	f Rheology	GD Labs	External testing	Group 1 testing	Inert vs Energetic formulation comparison	use gel time tester	Viscocity	Use spectrocopic methods	Conduct offline	onduct online	N/A			

What after Function Means?

- We have ranked the criticality of the functional requirements.
- We have assessed the means by which candidate solutions may achieve these and created system concepts. Do we now score these and determine the most desirable?

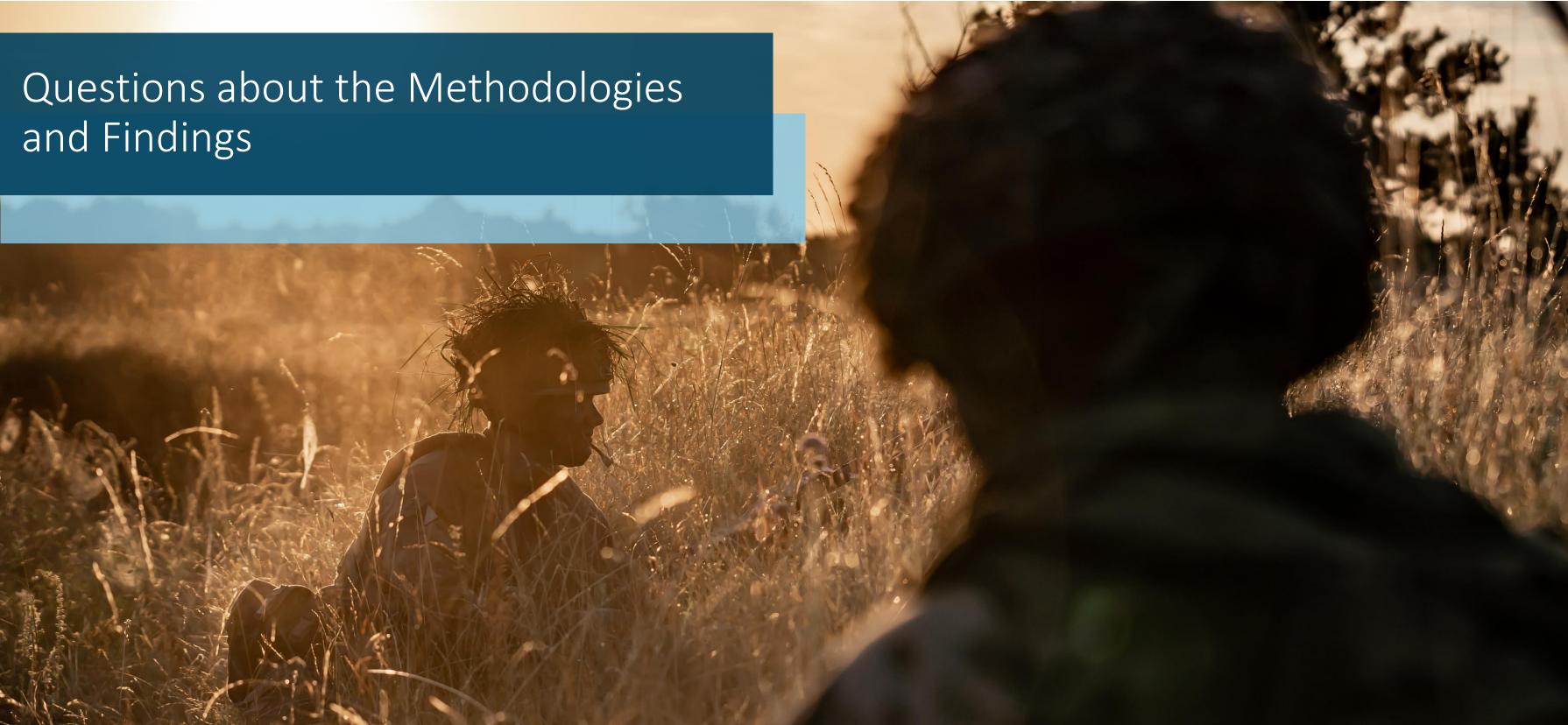
Selection Criteria

			D	esig	n Cor	псер	ts
	Pugh Concept Selection Matrix	Wieght	Electric 4-slot	Electric Conveyor	Gas Grill		
st	Even Toasting	2	S	S	-		
d Toa	Good Taste	3	S	S	S		
Good Toast Quality	Repeatable	3	S	+	-		
	Quick	3	S	S	S		
Capacity	Large Range of Bread Products	2	S	S	+		
ð	Multiple Slices/Units	4	S	+	+		
e la	Reliable	1	S	-	S		
Long Life	Durable	3	S	S	S		
2	Low Maintenance	3	S	-	S		
	Affordable	2	S	-	+		
Physical Attributes	Attractive	5	S	-	-		
Attri	Safe	3	S	-			
	Good Size	4	S	-	-		
8	Easy to use Controls	5	S	s	+		
to U:	Easy to Load	4	S	+	+		
Easy to Use	East to RemoveToast	4	S	+	-		
_	Automated	4	S	S			
	TOTAL +		0	4	4		
	TOTAL -		0	6	9		
	TOTAL SCORE		0	-2	-5		
	WEIGHTED TOTAL +		0	15	17		
	WEIGHTED TOTAL -		0	17	32		
		1					

BAE SYSTE

0 -2 -15

Reproduced with permission (Burge Hughes Walsh, 2009)


WEIGHTED SCORE

39

Pugh Matrix

- The PUGH Matrix scores the three candidate options numerically.
- Trade-Off of requirements and scores can be made at this stage to introduce hybrid concepts.

		Relative Importance	Relative Importance Weighted			
WHATs - Customer	How much:- From QFD 1		225			
Requirements	···· ···· ··· ··· ··· ··· ··· ··· ···					
Identify Prospective			-			_
Ingredient components			5	0	3	3
Define Preconditioing			-			_
Requirements			5	1	1	1
Define storage requirements			5	1	1	3
Conduct QA on feedstock			~	-	~	_
material characteristics			5	1	3	3
Conduct additional feedstock			~			_
characterisation tests			5	3	3	3
			~	-	~	_
Monitor material supply chain			5	1	3	3
Evaluate material for			~	0	-	-
environmental impact			5	0	1	1
Downselect candidate			5	0	9	9
materials (modelling)			2	0	3	3
Procure ingredients from			E	0	0	1
green mature list			5	U	U	'
Define different oxidisers			5	1	3	3
Define different grades of			5	3	3	3
materials			3	3	3	3
Define different formulations			5	3	9	9
Define different curing			5	0	3	3
catalysts						
Define Polymer Systems			5	3	9	9
Define different types/grades			5	3	9	9
of fuel			_		-	-
Define plasticisers			5	1	3	3
Dowselect material to match			5	1	3	3
new mixing process					Ŭ	Ŭ
Optimico opystal pasking			5	1	1	3
Optimise crystal packing Optimise fuel/oxidiser ratio			5	1	3	3
Mechanical properties			5	1	3	3
Formulate to enhance blast						
performance			5	3	9	9
Optimise Binder/Solids Ratio			5	1	3	3
Model Blast Performance			5	0	9	9
Measure Shock sensitivity						
(FCASW Initiation system)			5	0	0	9
				0	0	0
				145	470	540
Ranking		100		-145	-470	-540

