

Insensitive Munitions European Manufacturers Group

Dr Gaynor Olliver Ageing Expert Working Group (Chair)

FOR SAFER MUNITIONS AND TACTICAL ADVANTAGE

Assumptions

"The most important things to say are those which often I did not think necessary for me to say - because they were too obvious." *André Gide*

Nato define Insensitive Munitions as....

"Munitions which reliably fulfil specified performance, readiness, and operational requirements on demand, but which minimize the probability of inadvertent initiation and violence of subsequent collateral damage to the weapon platform (including personnel) when subjected to unplanned stimuli."

FOR SAFER MUNITIONS AND TACTICAL ADVANTAGE

How do we <u>ACHIEVE</u> IM?

Manufacturers have developed IM solutions through a combination of advanced technologies which mitigate violent reactions.

Examples include:(1) Energetic formulation based on low-sensitivity energetic molecules
(2) Optimised system architectures
(3) New types of logistic packaging

How do we ASSESS IM?

- By testing in accordance with STANAG 4439/AOP-39 which is the NATO regulation policy for the introduction and assessment of IM.
- Six tests are used to simulate the potential threats which an munition could encounter during its whole lifecycle and the level of reaction is assessed.
 - Assessment ranges from no reaction to full detonation.
- The munition is considered IM compliant if it meets a pre-defined level of insensitiveness.

NATO Regs. STANAG 4439/AOP-39

					REPRESENTATION OF	THE	IM RE	QUIF	REMI	ENTS	;Y							2	023		
								-	∂-												
						-				— ST	ANA					0P-39				l (Ra	nge of
		IS	ix te	ests	-		est edures	IM rements	- (()	P.1	2		DG-AT Guidelii			° 21189	3	-CAT	-2105E		
					Threat	11000			AASTP- SsD 1.2	03.0 . Cha	FüSK II 2		2000			July. 20	11	2 Unit Risk 30 S-CAT	STD-2	l ros	actions
М	unitio	n 1	lest Pr	ocedures		Stimuli	STANAG / AOP	requi	AA (Ss	DSA 03.0ME Part 1. Chap. 1	Fü	Φ	ΦΦ		*	**	**1	HD 1.	MIL-S		
	FH		4240	Fast Heating 🦟	Magazine / store fire or aircraft / vehicle fuel fire	FH	4240	V	V	V	V	V	V	V	IV ²	V ³	V 3	IV	V	VI	No Reaction
	SH	de	4382	Slow Heating	Fire in adjacent magazine, store or vehicle	SH	4382	v	v	v	v	v	v	v		v	v		۷	٧	Burn
1	BI	A	4241	Bullet Impact 🦛	⇒ Small arms attack	BI	4241	۷	V	V	۷	V	V	۷		V	V	in the	V	IV(F)	Deflagration
timuli	SR	AG	4396	Sympathetic Reaction	Most severe reaction of same munition in magazine, store, aircraft or vehicle	SR	4396	ш	Ш	ш	ш	ш	ш			ш	ш	Ш	Ш	IV(P)	Propulsion
St	FI	AN	4496	Fragment Impact 🕳	Fragmenting munitions	FI	4496	۷		V	v		14	V		V	V	IV	V	111	Explosion
	HFI	ST		Heavy Fragment Impact	attack	HFI							14	۷		III ⁵	III ⁵			11	Partial detonation
	SCJI		4526	Shaped Charge Jet Impact	Shaped charge weapon attack	SCJI	4526	U		ш	ш	-	14	Ш		ш	ш	and a		1	Detonation
					1 Only MEPS (ST-SG-AC10-11 Serie7 Te	sts) 2	No-Propu	lsion	3 After	five mir	utes	4 Type	l or mo	ore, as j	per THA	5 Fra	ince: S	-CAT N°	° 13146	0×(0)=(0)=	

STANAG 4439 • AOP-39 "Policy for Introduction and Assessment of Insensitive Munitions (IM)" SRD AOP-39.1 provides guidance on the organisation, conduct and documenting of full-scale testing. The IM Signature is assessed for any particular configuration of a munition during its life cycle.

Table from MSIAC TSO consensus assessmentbased on fielded systems in 2016 for warheads.

		19	91							20	16		
FCO	sco	BI	FI	SR	SCJ	MUNITION T	FCO	sco	BI	FI	SR	SCJ	
						PENETRAT	ORS						
						GENERAL PU BOMBS							
						MEDIUM CA	LIBRE						
						LARGE CALI MORTAR AMM							
						ANTI-AIR WAF							
						ANTI-SHIP WA	RHEADS						
						SHAPED CHA EFP	ARGE &						
						SUBMUNIT	IONS						
						UNDERWA	TER						
FC	FCO/SCO/BI/FI			Det	onatio	n Explosion	tion	Bur	ning		Pa	SS	
	SR/SCJ			Det	onatio	n Explosion	Deflagra	tion	Bur	ning	ſſ	Fa	il

Table from MSIAC TSOconsensus assessment based onfielded systems in 2016 for propulsion/pyrotechnics.

1991 2016 FCO SCO BI FI SR SCJ MUNITION TYPE FCO SCO BI FI SR SCJ MINIMUM SMOKE ROCKETMOTORS REDUCEDSMOKE ROCKETMOTORS **HIGH PERFORMANCE** ROCKETMOTORS LARGE CALIBRE GUN PROPELLANTS CADS/PADS/PYROTECHNICS

Partial Grey – Based On Limited Data

FCO/SCO/BI/FI	Detonation	Explosion	Deflagration	Burning	1	Pass
SR/SCJ	Detonation	Explosion	Deflagration	Burning	∫	Fail

Benefits/selling points of IM?

- Reduces front line risk
- Increases platform survivability
- Makes logistics and storage safer
- ALARP aids safety case assessments
- Reduces Whole Lifecycle Cost of Ownership
 - By addressing "cradle to grave"
 - Prolongs service life
 - Reduces environmental impact
 - Design for disposal

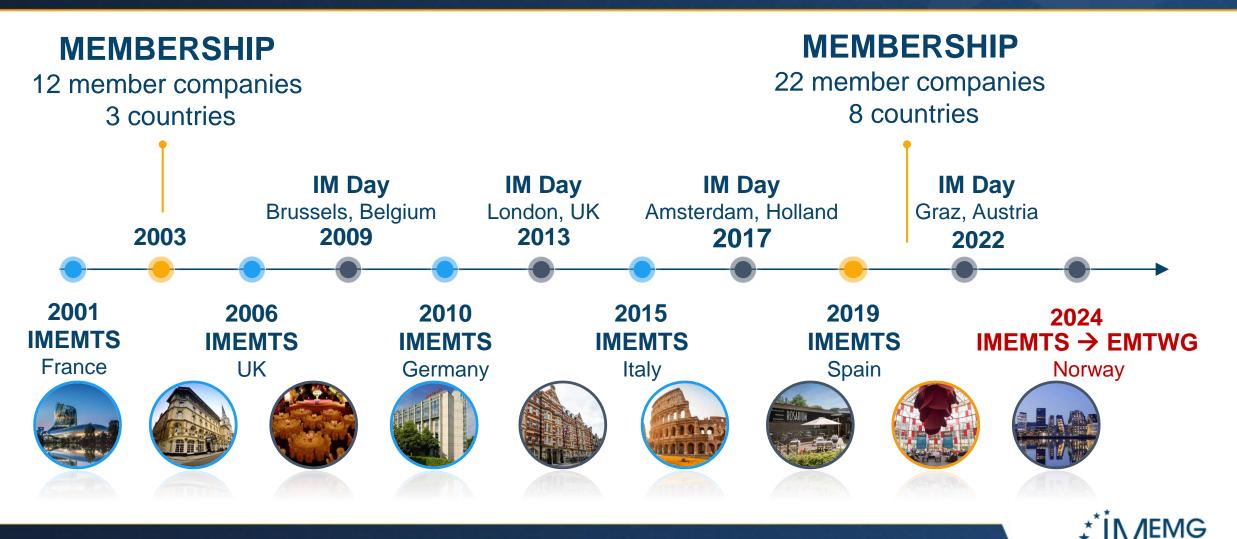
IMEMG Vision and Objectives

FOR SAFER MUNITIONS AND TACTICAL ADVANTAGE

Vision "The European IM industry focus and voice for IM"

Objectives

- 1. Support the development of harmonised international IM policies and regulations.
- 2. Facilitate the development and implementation of harmonised international IM standards for IM products during their whole life cycle.
- 3. Promote and share the benefits of IM technological progress.


Increase the operational benefits for the Armed Forces through the use of Insensitive Munitions

AIM

IMEMG History

FOR SAFER MUNITIONS AND TACTICAL ADVANTAGE

IMEMG Member Companies

23 companies from 8 countries

IMEMG Organisation 2023

Board of Directors & Expert Working Groups

Loïc Minguet President

Roland Favre Vice-president for France

Computer Models Didier Picart CEALe Ripoult

Julien Gadesaude Vice-president for Germany

Board of Directors

Gareth Flegg Vice-president for the UK

Gianluca Bersano Vice-president for Italy

Thomas Karlsson Vice-president for other countries

Yves.Guengant

Hazard Assessment & Classification **Carole Fournier** Eurenco France

Cost & Benefit Analysis **Rémi Boulanger** Nexter Munitions

FCO test procedure **Marie De Bats** MBDA France

Effects of Ageing Dr Gaynor Olliver MBDA UK

IMEMG Expert Working Groups

Overview

EWG 1: FAST COOK OFF (FCO) TEST PROCEDURES

• Harmonisation and improvements to the test procedure for FCO (STANAG 4240). CALIFLUX

EWG 2: COMPUTER MODELS FOR IM PERFORMANCE

• A review of Computer Models to aid the design and assessment of IM performance.

EWG 3: HAZARD ASSESSMENT AND CLASSIFICATION

• The harmonisation of International test procedures and acceptance criteria.

EWG 4: EFFECTS OF AGEING

• The effects of ageing on IM response or on the properties of energetic materials which could influence IM response.

EWG 5: COST / BENEFIT ANALYSIS

To promote and establish the state of the art of IM Cost Benefit Analysis. ASSIM

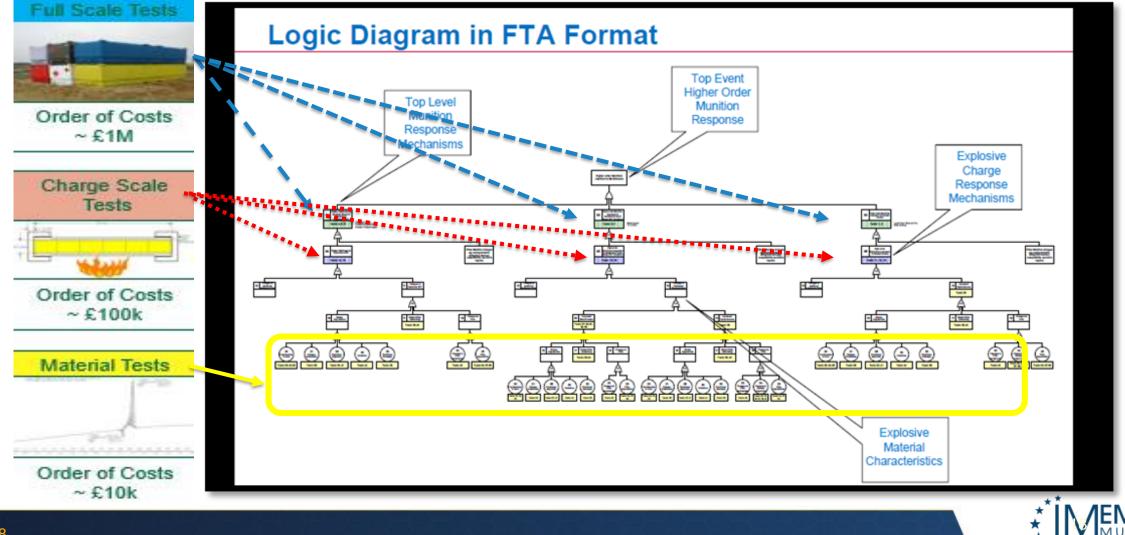
Approach taken - on range of energetic materials

- Expert meetings: sharing experiences to build Fault Trees.
- Fault Tree considers relationship between:-
 - Explosive response mechanisms and appropriate tests
 - Munition IM response

Logic Diagram Inputs / Outputs

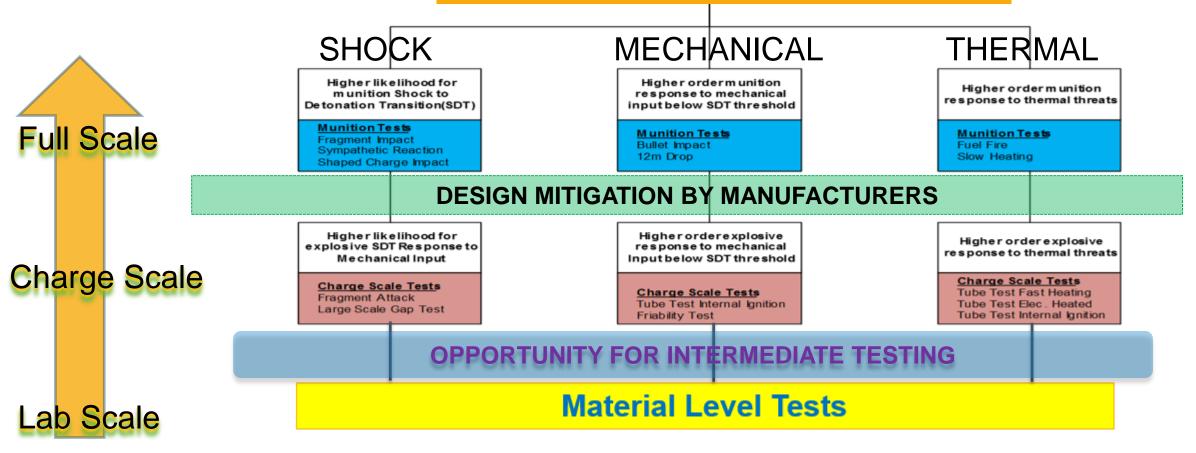
Approach – 3 working documents used to generate FTAs

- To generate the logic diagrams for the different generic formulations types three working documents are populated:
- 1. <u>Test methods</u> including reference numbers for the different nations.
- 2. <u>Table linking the relevant test methods to</u> possible failure modes.
- 3. <u>Generic comparison table of material</u> <u>properties</u> to help identify key differences between generic types.


UK BEFEI	REPORTS .		SALO P	ETRENCE		A MEFERSION		_		
Hamiltians Saah					Hughland Scale III Laste					
Roll Barcolphian	Sec.	A077-08	- 51	ARA-6	Teet	A71008	SPEC BT	A-047 1		
 Husitian Furthering 			\$2.00	_						
2 Physician Displayering			4242	_						
2 Physician Bull-college and			10.01							
4 Physiology Frequencies and			4294							
8 Physician Surgerthetic Reaction			4271							
 Shand Diarge Ingent 			4504	_						
F Phanking G n. Kup Lat.	But Day 197 18	_		_						
Charge Scale						ange Sunte 20		_		
Roll Description	Sec.	A071-08	_	_	Teet	A71608	SPEC BY	A071		
10 Furthering Tate Last	KHEIMP #1	242.01.000		_						
12 Destricative statistic Last.	DTW/41	242,41,467			-					
O Internal polities Take Fart	APPENDE 18	242.01.008		_	-					
14 Exeguted Instant Take Test	DTMP34			_						
et Austral Easte San Terr	APPENDE 33		4811							
N Printing Last	DINTEGRO			_	R-Lability,	NF119-504	162	241.4		
Explanies Charge / Hat	and distants in	-		_	Lagineira (Annual P Manual	al Lasta I.			
Ruff Baroniphina	Sauce	Acr 1 - 118			Real T	AT WORK	SPEC.	Acres 1		
19 Virgal Loomination				_						
24 Matingonity				_						
12 Virgel ad as prime of the run-				_						
22 Vandia mangh (she spring		100.00.001	#8111		Francische mit annignet	10110-148				
LH DPMA		942,412,425	4540							
18 Shara Milanbaar				_	Data of Lines	H# 1714-246				
18 Despite		102,012,015		_	These refusions shit di	NF 119-384		342.4		
20 Renacingan	APPEND IN	201003000	4814							
13 Decel Direte Confesionnes	DEM D	2010/040								
24 Fampat stora of hypitiss.	APPEND 1	242.44.462	1000		Tanglostoo, Castain?	NF 171-014	- 40			
10 BATIMENT	DTW-41			Acces 0	Indian de Tenerik Britskiller	NF 179-544	194	195.0		
14 BAPOVINIAN	82102-00		4827	Annes M	Indian do Examination Mar	HF 114-843		244.4		
12 Field Frintige	DEM 1									
10 Manuary Frightee	APRIL 11	20102.000								
14 BBC Analysis		102,012,054	45/3	10110	0.00	NF179-348				
18 MAG Fairt				_						
24. Dat-Ball/Compliant Despite			4540	_	Density is extrinuinting.					
17 Pacast Induity			#881		Characterization with a	101111-014				
30 MPC-Analysia			4912	_						
14 Catyorities Reduck					the say for constituents	HF 119-201				
40 Microsoft Continuing										
et Placticker Sector										
40. Una Dimensional Time to Deploying				-						
40 Example and an an index			100		Canado Malina	MF172-016.4912				
and Martinetidant Langel				_				-		

	i orginal PBI Int. Ing Fault Tree Analysis							Propellant list - meeting 20150515 Composite propellant						
Expl	nive Material Failure Modes		, Cop	icel.	Mat	erial (web .	East	onive Material Failure Modes					
15	Changes to quality of explosive IIIIio Changes to explosive SOT Changes in explosive Changebraic Incoment Explosive Change - Conting Context explosive Change - Conting Last of Incorporating	22.22	22 41					1000	Changes to quality of explosive 100 Changes to explosive 301 Changes to explosive characteristic to maned Explosive Charge - Coching Cochiel explosive Diarge - Coching Lass of Normagnetity					
10 10	Increased Charge persisty Binder/Filter debonding Binder degradation Changes to Filter	6	40		E	Ē		17	Increased Charge porosity Binder/Filler debonding Blinder degradation Changes to Filler	ľ				
-	Continuation of cure Polymer terestricture Dranges in Filter morphology - Crystel Ib Filter Degradation - Explorers degradation	10	24	8					Continuation of curs Protymer brasildown Changes in Piller morphology - Crystal 1 Filler Changestation - Exclusion degradation					
100	Overgen to thermal properties Increased sensitiveness Overge in mechanical properties Can be mation	200	No.	858	쁥	3	42		Changes to thermal properties Increased sensitiveness Changes in mechanical properties Can increasion	Ē				
-	Pastoner regular Overson decorpositor - chemical dep		41	40				1	Participal register. Denical decorporation - chemical dep	Đ				

-800a	IM-Meit-Castr	Propellant-Composite*
peneity as cast good+	Needs controlled cooling/ stress- reliefo	Homogeneity as cast good+
mechanical properties=	Prone to cracking+	Good mechanical properties»
ry – good tensile- ties=	Brittle – good compressive- properties¶ Re-inforcement possibles	Rubbery – good tensile- properties*
tion/migration of plasticiser+	Exudation/migration of binder/synthetic-bi-products=	Exudation/migration of plasticiser toward liner or thermal insulations
usually non-energetic=	Energetic binder*	Binder usually non-energetic and energetic binders ¹
filler adhesion poor- t bonding agent=	Binder/filler adhesion good-	Bonded agent with AP based are possibles
ass transition point	Mechanical properties limited by melting point of binders	No impact of glass transition- temperature on mechanical- properties as glass temperature is outside of in-service- temperature range 1



Approach taken – Full/Charge/Lab Scale

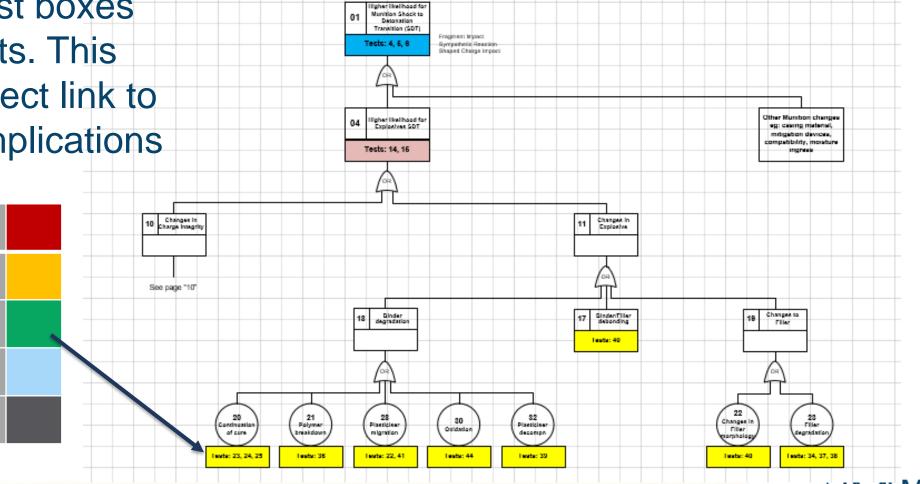
Approach taken – Full/Charge/Lab Scale

Want to eliminate probability of high order event

Technical Status on FTA - Potential Applications...

- Demonstrated it provides an overview of effects of EM properties on IM response.
- Has ability to be tailored to suite range of energetic formulations and multiply applications... examples
 - Applicable to Material Qualification, In-Service Surveillance & Life Extension.
 - Helps identifies gaps in test programmes and test data.
 - Aid justification as to why new methods are required in specific areas.
 - Ensure programmes focus on tracking potential failure modes.
- Can identify which tests offer the most value (most frequent in logic diagram).
 - Could be used to scope out most appropriate tests when <u>developing new</u> <u>formulations</u>.

Technical Status on FTA - Potential Applications...

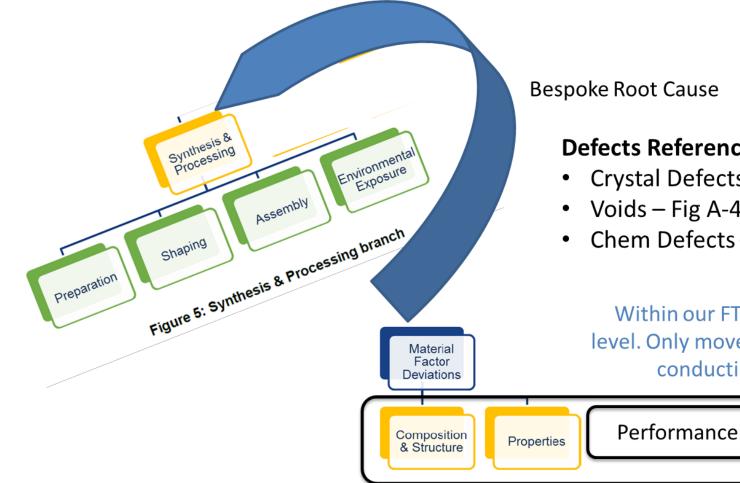

- Illustrates how available test data fits the big picture
 - Shows links in scale which have the <u>potential to educate early careers/new</u> <u>starters</u>.
- Could also be used to assess effects of energetic ingredients or process changes, in addition to ageing <u>reduce re-qualification programmes.</u>
- Develop into useable tool for everyone multiply applications
 - Employ traffic light system.
- Used to demonstrate implications at system level if you want projects to take notice and fund additional work
 - Black and white approach needed as project leaders not interested in the detail.
- Output could help identify technical areas which need further development
 - Gaps research into SMARTER Certification methods

Fault Tree Analysis Visual Example

Colour code test boxes based on results. This would show direct link to system level implications

Risk Monitor Acceptable Outstanding Not requested

Expl	osive Material Failure Modes		Ехр	losive	Mate	erial 7	Fests	
		000000000000						
10	Changes to quality of explosive filling							
11	Changes to explosive SDT							
12	Changes in explosive characteristics							
13	Increased Explosiveness	28						
14	Cracked explosive Charge - Cracking	21	22					
15	Loss of homogeneity	39	41					
16	Increased Charge porosity	21	22	26				
17	Binder/Filler debonding	23	40					
18	Binder degradation							
19	Changes to Filler							
20	Continuation of cure	23	24	25				
21	Polymer breakdown	36						
22	Changes in Filler morphology - Crystal Morphology	40						
23	Filler Degradation - Explosive degradation	34	37	38				
24	Changes to thermal properties	29	34	35	37	38	42	
25	Increased sensitiveness	27	30	31	32	33		
26	Change in mechanical properties	23	24	25				
27	Gas formation							
28	Plasticiser migration	22	41					
29	Chemical decomposition - chemical degradation	34	37	43				
30	Oxidation	44						
32	Plasticiser decomposition	39						


	Explosive Material Test	S						
21	Radiography							
22	Inspection of Sectioned Charge							
23	Tensile Strength / Elongation		STAN	NAG 4	506			
24	DMA		STAN	NAG 4	540			
25	Shore A Hardness							
26	Density							
27	Impact Sensitiveness		STAN	NAG 4	489			
28	Small Scale Explosiveness		EMT	AP 1D				
29	Temperature of Ignition		STAN	NAG 4	491,	Annex		
30	BAM Impact		STAN	NAG 4	489,	Annex		
31	BAM Friction		STAN	NAG 4	487,	Annex		
32	Mallet Friction		EMT					
33	Rotary Friction		STAN	NAG 4	487,	Annex		
34	DSC Analysis		STAN	NAG 4	515			
35	ARC Test							
36	Sol content / Cross link density		STAN	NAG 4	581			
37	Vacuum Stability		STANAG 4556					
38	HFC Analysis		STAN	NAG 4	582			
39								
40	Risk							
41			STAN	NAG 4	581			
42	Monitor							
43	Monitor		STAN	NAG 4	147			
44								
	Acceptable							
	Outstanding							

Not requested Colour code boxes

based on real data

More Recently - Fitting Defects to FTAs?

Bespoke Root Cause

Defects Reference

- Crystal Defects Fig A-3 (p31/41)
- Voids Fig A-4 (p31/41)
- Chem Defects Fig A-5 (p32/41)

Within our FTA work keep descriptions to top level. Only move towards lower level descriptors if conducting root cause investigation.

Energetic Materials Technology Working Group (EMTWG)

(Previously known as the Insensitive Munitions and Energetic Materials Technology Symposium – IMEMTS)

13th to 16th May, 2024 Clarion Hotel The Hub, Oslo, Norway

"Preparing advanced Energetic Materials & Insensitive Munitions

for high intensity warfare"

