

Quality Assurance of RAM Mixed Compositions

Mr Vincent I. Coombs

Fulmination 18 April 2023

www.cranfield.ac.uk

- Introduction
- Advantages
- Aims
- Previous Studies
 - Davey, Wilgeroth and Burne
 - Osorio and Muzzio
- Process Capability
 - Cp (case study)
- Methodology
 - Homogeneity
 - Methodology (Duration and Intensity)

- Results
 - MixDuration
 - Intensity
- Process Capability
 - Ср
 - Cpk
- Conclusions

- RAM: Novel mixing technique based on rapid acceleration of mixing vessel.
- Energy imparted into the vessel contents generating low shear mix zones throughout the entire vessel.
- Contrasted to more conventional mixing techniques (Planetary mixing etc.); high shear in specific mix zones
- Advantages:
 - More Efficient mixing (Shorter mix times)
 - No mechanical components in mix vessel
 - Scalable quantities
- Disadvantages:
 - Little prior experience in the explosives sector.
 - Currently no industrialised example to learn from
 - Burden of evidence on manufacturers.

3

- Primarily RAM offers advantages for bulk mixing.
- Not dependant bulk vessels.
- Potential for in case mixing
- Possible issues with certification of batches
 - 1 case = 1 batch/lot
- Solution may lie in justification of reduced inspection using Process Capability.

resodynmixers.com (2023)

- To investigate the relationship between Mix time and mix homogeneity in RAM mixed compositions
 - Mix times between 10s and 30 mins
 - Inert mixes
- Evaluate the correlation between Mix intensity and homogeneity
 - Mix intensities between 0 and 80g
- To evaluate the Process Capability of RAM to generate a homogenous mixture based on control of mix intensity.
 - Measured by Process Capability Ratio (Cp)

- Mostly from the pharmaceutical field
 - Used to mix API into carriers
- Largely concerned with efficiency of mixing
- Little consideration of repeatability or reliability of the process
- Good Methods for determining Mix Efficacy
- Salient Literature from my review
 - Davey, Wilgeroth and Burn (2019)
 - Orsorio and Muzzio (2015)

- Investigated differences between Planetary and RAM mixing.
- Considered the effect of Mix intensity on mechanical properties.
- Some work into the effect of mix time on material properties.
 - Relatively high tolerance for mix time given sufficient intensity.
- Showed that RAM comps comparable to Planetary.
- Data that variability of Shore A hardness reduced with greater mix intensity.
 - Homogeneity

RAM (60 G) vs. planetary comparison (Shore A) Davey, Wilgeroth and Burn (2015)

Osorio and Muzzio

- Considered the effect of many factors on mix homogeneity:
 - Vessel fill level.
 - Mix time.
 - Acceleration (Intensity).
- Used difference from theoretical concentration as a measure of homogeneity.
- Found that:
 - Fill level had little effect on homogeneity of mix.
 - Mix time beyond a certain threshold had reduced effect.
 - Acceleration greatly determined the mix homogeneity.

Process Capability Index

- Measured by Process Capability Ratio(Cp) / Index (Cpk).
- Cpk indicates how centred the process is and its size • compared to the spec.
- Cp indicates proximity to limits. •
- Influenced by: •
 - Natural/induced Process Variability (σ) (Process • Limits).
 - Process Mean (x'). ٠
 - Process adherence.
 - Specification Limits (L) (acceptable results).
- Appropriate for processes that are statistically in control •
 - Long history of success. •
 - Mathematically proven to be statistically reliable. •

9

Process Capability Ratio Cp

(Davey, Wilgeroth and Burn (2019))

- Based on
 - proximity of process mean (x') to limits (L)
 - Variance in process (standard deviation σ)

 $Cp = \frac{(X' - L)}{3 \times O'}$

- Only taking Values from mixes over 50G acceleration (estimated for illustration only)
 - X' = 46.6
 - L (arbitrary for demo) = 40
 - $\sigma = range/d2 = 0.86$
- Cp for Davey Wilgeroth and Burne Data (estimated)
 - 2.55
 - Cp values of between 1.33 and 2 considered Capable

Davey, Wilgeroth and Burn (2019)

Capable?	Ср
Not	0.33
Capable	0.67
Capable	1
with	1.1
tight	1.2
control	1.3
Capable.	1.33
	1.4
	1.5
	1.6
	1.67
	1.8
	2

- How to measure.
 - Simple 2 part mixture
 - Soluble base and insoluble measured component
- "Formulation:" known ratio of components.
- Post mix sample component ratio compared to bulk ratio
- Homogeneity measured as sample deviation from bulk ratio
- Based on Osorio and Muzzio (2015)

Sampling Protocol Osorio and Muzzio (2015)

Mix Duration

- Several samples mixed for varying lengths of time.
 - 0s (control) to 1800s (30min)
 - Peak Intensity 50g
- 3 runs per mix length
- Plot mean deviations from theoretical bulk mixture
- Determine optimum mix time.

Mix Intensity

- Several samples mixed for varying peak accelerations
 - 0 (control) 80g
- 3 Runs per level
- Mix time determined by earlier work (640s)
- Plot mean deviations from theoretical bulk mixture
- Plot best fit and determine coefficient of correlation

- High Deviation from Bulk content for unmixed sample
- Significantly lower deviation for mixed samples regardless of duration.
- Agreement with Davey, Wilgeroth and Burn.
 - Mix duration irrelevant beyond a given mix intensity (50g)
- Low correlation between mix duration and homogeneity..
- Some anomalous readings at 1800s leading to greater mean deviation

- High Deviation for unmixed samples
- Reduced Deviation with increasing intensity
 - Coeficient of correlation = 0.8722
- Optimum mix intensity between 50g and 60g
- Deviations from the trend line likely due to primitive sampling methodology.

- For a normally distributed set of data, all values can be assumed to be within 3σ of the mean
- CP is a simple quotient of the Specification range over the process range. Therefore

$$Cp = \frac{(USL - LSL)}{6\sigma}$$

- USL = Upper Spec Limit, LSL == Lower Spec Limit
- Assuming a LSL of 0% and USL of 5%

 $\dot{C}p = \frac{(5-0)}{6\sigma} = 0.253$

- Cp = 1 is considered barely adequate
- BY rearranging the above we can see that to achieve Cp=1 we must significantly increase the tolerance band.
 - 1 *(6 * 3.291) = (USL LSL) = 19.746

Process Capability Cp

Process Capability Cpk

- Cpk compares the proximity of the process to the nearest specification limit, against the variability of the process
- Predicts failure rate
- $Cpk = min\left\{\frac{\mu LSL}{3\sigma} \middle| \frac{USL \mu}{3\sigma}\right\}$
 - USL = 5%, µ = mean
 - For minimum peak acceleration of 10g:

•
$$Cpk = \frac{5-2.606}{3\sigma}$$

• Cpk = 0.242

СРК	Process Yield	DPMO
0.33	68.27%	317300
0.67	95.45%	45500
1	99.73%	2700
1.33	99.99%	100
1.67	99.9999%	1
2	99.999998%	0.02
Alkubaisi M (2013)		

Alkubaisi M. (2013)

Process Capability Cpk (Upper)

- Homogeneity largely independent of mix duration.
- Homogeneity improves with Mix intensity
- Process capability can be improved with mix intensity
- Mix intensity can therefore be used as a primary indicator of compliant mixes
- Some to be done work to understand:
 - Process capability of RAM mixing overall
 - Factors at which mix duration becomes a limiting metric
- Good understanding of process capability can:
 - Allow reduced inspection rates
 - Allow greater insight into expected batch performance
 - Allow for optimisation of production processes
 - Form part of the argument for the qualification of RAM compositions.

www.cranfield.ac.uk

T: +44 (0)1234 750111

- 🗊 @cranfielduni
- @cranfielduni
- 子 /cranfielduni